全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adherence of Surgeons to Antimicrobial Prophylaxis Guidelines in a Tertiary General Hospital in a Rapidly Developing Country

DOI: 10.1155/2013/842593

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives. To assess the standard practice of care of surgeons regarding surgical antibiotic prophylaxis, to identify gaps, and to set recommendations. Methods. A retrospective analysis of data obtained from different surgical units in a single center in Qatar over a 3-month period in 2012. A total of 101 patients who underwent surgery and followed regimes for surgical prophylaxis as per hospital guidelines were included in the study. Results. The overall use of antibiotic was 89%, whereas the current practice did not match the recommended hospital protocols in 53.5% of cases. Prolonged antibiotics use (59.3%) was the commonest reason for nonadherence followed by the use of an alternative antibiotic to that recommended in the protocol (31.5%) and no prophylaxis was used in 9.2% of cases. The rate of compliance was significantly higher among clean surgery than clean contaminated group ( ). Forty-four percent of clean and 65% of clean-contaminated procedures showed noncompliance with the recommended surgical antimicrobial prophylaxis hospital guidelines. Conclusion. Lack of adherence to hospital protocols is not uncommon. This finding remains a challenge to encourage clinicians to follow hospital guidelines appropriately and to consistently apply the surgical antibiotic prophylaxis. The role of clinical pharmacist may facilitate this process across all surgical disciplines. 1. Introduction Surgical antimicrobial prophylaxis (SAP) is an initial administration of short course of an antimicrobial agent prior to surgery in order to prevent surgical site infections [1]. SAP is critical in preventing infections that may lead to sepsis, organ failure, and death during hospital stay. Despite huge advances in antiseptic measures, antibiotics, and preoperative precautions, surgical site infection (SSIs) still accounted for high morbidity and mortality [2]. SSI is the second most common type of health care-associated infection after urinary tract infections [3]. Also, SSI was reported to represent 14–16% of the estimated two-million nosocomial infections affecting hospitalized patients in the United State [4]. It has been reported that at least 5% of patients undergoing a surgical procedure developed SSI [5]. Kirkland et al. [6] showed that patients who developed SSI have 60% more chances of prolonged intensive care unit stay, five fold increased risk of readmission to the hospital and two-times higher rate of mortality compared to patients who had no SSI. One of the most common microorganisms that are involved in SSI is Staphylococcus aureus, which is reportedly

References

[1]  A. K. A. Khan, PVM, M. R. Rashed, and G. Banu, “A study on the usage pattern of antimicrobial agents for the prevention of surgical site infections (SSIs) in a tertiary care teaching hospital,” Journal of Clinical and Diagnostic Research, vol. 7, no. 4, pp. 671–674, 2013.
[2]  D. E. Reichman and J. A. Greenberg, “Reducing Surgical Site Infections: a review,” Reviews in Obstetrics and Gynecology, vol. 2, pp. 212–221, 2009.
[3]  R. P. Wenzel, “Health care-associated infections: major issues in the early years of the 21st century,” Clinical Infectious Diseases, vol. 45, supplement 1, pp. S85–S88, 2007.
[4]  W. A. Jan, S. M. Khan, M. Jehanzeb, and Muazzam, “Surgical site infection and pattern of antibiotic use in a tertiary care hospital in Peshawar,” Journal of Ayub Medical College Abbottabad, vol. 22, no. 3, pp. 141–145, 2010.
[5]  Surgical site infection, “Prevention and treatment of surgical site infection,” National Institute for Health and Clinical Excellence Guidelines Clinical Guidelines 74 (NICE CG74) http://www.nice.org.uk/nicemedia/live/11743/42379/42379.pdf.
[6]  K. B. Kirkland, J. P. Briggs, S. L. Trivette, W. E. Wilkinson, and D. J. Sexton, “The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs,” Infection Control and Hospital Epidemiology, vol. 20, no. 11, pp. 725–730, 1999.
[7]  M. S. Favero, R. P. Gaynes, T. C. Horan et al., “National Nosocomial Infections Surveillance (NNIS) Report, Data Summary from October 1986-April 1996, issued May 1996,” American Journal of Infection Control, vol. 24, no. 5, pp. 380–388, 1996.
[8]  E. T. Houang and Z. Ahmet, “Intraoperative wound contamination during abdominal hysterectomy,” Journal of Hospital Infection, vol. 19, no. 3, pp. 181–189, 1991.
[9]  D. H. Culver, T. C. Horan, R. P. Gaynes et al., “Surgical wound infection rates by wound class, operative procedure, and patient risk index,” American Journal of Medicine, vol. 91, no. 3, pp. 152S–157S, 1991.
[10]  R. J. Bowater, S. A. Stirling, and R. J. Lilford, “Is antibiotic prophylaxis in surgery a generally effective intervention?: testing a generic hypothesis over a set of meta-analyses,” Annals of Surgery, vol. 249, no. 4, pp. 551–556, 2009.
[11]  S. Harbarth, M. H. Samore, D. Lichtenberg, and Y. Carmeli, “Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance,” Circulation, vol. 101, no. 25, pp. 2916–2921, 2000.
[12]  E. P. Dellinger, “Prophylactic antibiotics: administration and timing be-fore operation are more important than administration after opera-tion,” Clinical Infectious Diseases, vol. 44, no. 7, pp. 928–930, 2007.
[13]  D. E. Fry, “Surgical Site Infection: pathogenesis and Prevention,” http://clinicaltrials101.com/bibliographiesSSI_pdfs/1_SSI_Review_2003.pdf.
[14]  H. C. Polk Jr. and A. B. Christmas, “Prophylactic antibiotics in surgery and surgical wound infections,” American Surgeon, vol. 66, no. 2, pp. 105–111, 2000.
[15]  “ASHP therapeutic guidelines on antimicrobial prophylaxis in surgery. American society of health-system pharmacists,” American Journal of Health-System Pharmacy, vol. 56, no. 18, pp. 1839–1888, 1999.
[16]  D. Talon, F. Mourey, S. Touratier et al., “Evaluation of current practices in surgical antimicrobial prophylaxis before and after implementation of local guidelines,” Journal of Hospital Infection, vol. 49, no. 3, pp. 193–198, 2001.
[17]  C. Schmitt, R. A. Lacerda, M. C. Padoveze, and R. N. Turrini, “Applying validated quality indicators to surgical antibiotic prophylaxis in a Brazilian hospital: learning what should be learned,” American Journal of Infection Control, vol. 40, no. 10, pp. 960–962, 2012.
[18]  N. D. Friedman, K. Styles, A. M. Gray, J. Low, and E. Athan, “Compliance with surgical antibiotic prophylaxis at an Australian teaching hospital,” American Journal of Infection Control, vol. 41, no. 1, pp. 71–74, 2013.
[19]  P. Durando, M. Bassetti, G. Orengo et al., “Adherence to international and national recommendations for the prevention of surgical site infections in Italy: results from an observational prospective study in elective surgery,” American Journal of Infection Control, 2012.
[20]  C. E. Tourmousoglou, E. C. Yiannakopoulou, V. Kalapothaki, J. Bramis, and J. S. Papadopoulos, “Adherence to guidelines for antibiotic prophylaxis in general surgery: a critical appraisal,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 1, pp. 214–218, 2008.
[21]  N. H. Al-Momany, A. G. Al-Bakri, Z. M. Makahleh, and M. M. B. Wazaify, “Adherence to international antimicrobial prophylaxis guidelines in cardia surgery: a Jordanian study demonstrates need for quality improvement,” Journal of Managed Care Pharmacy, vol. 15, no. 3, pp. 262–271, 2009.
[22]  H. S. Rehan, A. K. Kakkar, and S. Goel, “Pattern of surgical antibiotic prophylaxis in a tertiary care teaching hospital in India,” International Journal of Infection Control, vol. 6, no. 2, pp. 34–39, 2010.
[23]  Y. Yohannes, Y. Mengesha, and Y. Tewelde, “Timing, choice and duration of perioperative prophylactic antibiotic use in surgery: a teaching hospital based experience from Eritrea, in 2009,” Journal of the Eritrean Medical Association, vol. 4, no. 1, pp. 65–67, 2009.
[24]  C. Hohmann, C. Eickhoff, R. Radziwill, and M. Schulz, “Adherence to guidelines for antibiotic prophylaxis in surgery patients in German hospitals: a multicentre evaluation involving pharmacy interns,” Infection, vol. 40, no. 2, pp. 131–137, 2012.
[25]  R. P. Wenzel, “Preoperative antibiotic prophylaxis,” New England Journal of Medicine, vol. 326, no. 5, pp. 337–339, 1992.
[26]  M. E. E. van Kasteren, B. J. Kullberg, A. S. de Boer, J. Mintjes-de Groot, and I. C. Gyssens, “Adherence to local hospital guidelines for surgical antimicrobial prophylaxis: a multicentre audit in Dutch hospitals,” Journal of Antimicrobial Chemotherapy, vol. 51, no. 6, pp. 1389–1396, 2003.
[27]  M. Askarian, A. R. Moravveji, H. Mirkhani, S. Namazi, and H. Weed, “Adherence to American Society of Health-System Pharmacists surgical antibiotic prophylaxis guidelines in Iran,” Infection Control and Hospital Epidemiology, vol. 27, no. 8, pp. 876–878, 2006.
[28]  S. Hosoglu, M. Sunbul, S. Erol et al., “A national survey of surgical antibiotic prophylaxis in Turkey,” Infection Control and Hospital Epidemiology, vol. 24, no. 10, pp. 758–761, 2003.
[29]  P. Bailly, S. Lallemand, M. Thouverez, and D. Talon, “Multicentre study on the appropriateness of surgical antibiotic prophylaxis,” Journal of Hospital Infection, vol. 49, no. 2, pp. 135–138, 2001.
[30]  S. Imai-Kamata and K. Fushimi, “Factors associated with adherence to prophylactic antibiotic therapy for elective general surgeries in Japan,” International Journal for Quality in Health Care, vol. 23, no. 2, Article ID mzq080, pp. 167–172, 2011.
[31]  T. D'Escrivan, J. S. Lemaire, E. Ivanov et al., “Surgical antimicrobial prophylaxis: compliance to guidelines and impact of targeted information program,” Annales Francaises d'Anesthesie et de Reanimation, vol. 24, no. 1, pp. 19–23, 2005.
[32]  K. M. Lundine, S. Nelson, R. Buckley, S. Putnis, and P. J. Duffy, “Adherence to perioperative antibiotic prophylaxis among orthopedic trauma patients,” Canadian Journal of Surgery, vol. 53, no. 6, pp. 367–372, 2010.
[33]  K. Miliani, F. L'Hériteau, and P. Astagneau, “Non-compliance with recommendations for the practice of antibiotic prophylaxis and risk of surgical site infection: results of a multilevel analysis from the INCISO Surveillance Network,” Journal of Antimicrobial Chemotherapy, vol. 64, no. 6, Article ID dkp367, pp. 1307–1315, 2009.
[34]  D. W. Bratzler and P. M. Houck, “Antimicrobial prophylaxis for surgery: an advisory statement from the national surgical infection prevention project,” Clinical Infectious Diseases, vol. 38, no. 12, pp. 1706–1715, 2004.
[35]  A. J. Mangram, T. C. Horan, M. L. Pearson, et al., “Guideline for prevention of surgical site infection, Hosptal infection control practices advisory committee,” Infect Control Hosp Epidemiol, vol. 20, pp. 250–278, 1999.
[36]  A.-M. Simon, A.-C. Dzierzek, F. Djossou et al., “Factors associated with non-compliance to surgical antimicrobial prophylaxis guidelines during a prospective audit,” Annales Francaises d'Anesthesie et de Reanimation, vol. 31, no. 2, pp. 126–131, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133