全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats

DOI: 10.1155/2013/172494

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the group fed phytic acid supplement compared to the other groups. The spike in random blood glucose was the lowest in the same group. We noted reduced serum triglycerides and increased total cholesterol and HDL cholesterol levels in the group fed phytic acid supplement. Serum alkaline phosphatase and alanine amino transferase activities were significantly ( ) increased by phytic acid supplementation. Systemic IL-1β level was significantly ( ) elevated in the diabetic control and supplement treated groups. The liver lipogenic enzyme activities were not significantly altered among the groups. These results suggest that phytic acid supplementation may be beneficial in the management of diabetes mellitus. The observed adverse effect on the liver may be due to the combined effect of streptozotocin-induced diabetes and phytic acid supplementation. 1. Introduction Phytic acid (IP6) is the primary storage form of phosphorus in seeds and in some cases; it is thought to be responsible for their remarkable longevity of up to 400 years [1, 2]. Phytic acid is also found in significant quantities in roots and tubers. However, with the exception of avocado fruit, the levels of phytic acid in fruits are generally lower than the levels in seeds. Phytic acid is generally considered as an antinutrient because of its strong ability to chelate multivalent metal ions, precipitate, and decrease the availability of these minerals as a result of the formation of very insoluble salts that are poorly absorbed from the gut [3, 4]. The involvement of phosphorylated inositol (IP1 to IP6), especially IP6 in insulin secretion, has been reported [5]. For example, an extract from the skin of sweet potato has been shown to aid in the control of type II diabetes by decreasing insulin resistance in the affected patients [6]. Of note, however, is the increase intracellular concentration of D-myoinositol 1,2,3,4,5,6-hexakisphosphate (IP6) in cells that are involved in insulin secretion and several other cell types [7–9]. It is believed that phosphorylated inositol, especially phytic acid have roles in the

References

[1]  R. W. Owen, U. M. Weisgerber, B. Spiegelhalder, and H. Bartsch, “Faecal phytic acid and its relation to other putative markers of risk for colorectal cancer,” Gut, vol. 38, no. 4, pp. 591–597, 1996.
[2]  H. W. Lopez, C. Coudray, J. Bellanger, H. Younes, C. Demigné, and C. Rémésy, “Intestinal fermentation lessens the inhibitory effects of phytic acid on mineral utilization in rats,” Journal of Nutrition, vol. 128, no. 7, pp. 1192–1198, 1998.
[3]  B. Q. Phillippy, “Inositol phosphates in foods,” Advances in Food and Nutrition Research, vol. 45, pp. 1–60, 2003.
[4]  J. R. Zhou and J. W. Erdman Jr., “Phytic acid in health and disease,” Critical Reviews in Food Science and Nutrition, vol. 35, no. 6, pp. 495–508, 1995.
[5]  N. D. Vanderlinden and I. Vucenik, Too Good to Be True?Bearing Marketing Communications Ltd, Ontario, Canada, 2004.
[6]  B. Ludvik, W. Waldh?usl, R. Prager, A. Kautzky-Willer, and G. Pacini, “Mode of action of Ipomoea batatas (Caiapo) in type 2 diabetic patients,” Metabolism, vol. 52, no. 7, pp. 875–880, 2003.
[7]  P. J. French, C. M. Bunce, L. R. Stephens et al., “Changes in the levels of inositol lipids and phosphates during the differentiation of HL60 promyelocytic cells towards neutrophils or monocytes,” Proceedings of the Royal Society B, vol. 245, no. 1314, pp. 193–201, 1991.
[8]  T. R. Jackson, T. J. Hallam, C. P. Downes, and M. R. Hanley, “Receptor coupled events in bradykinin action: rapid production of inositol phosphates and regulation of cytosolic free Ca2+ in a neural cell line,” The EMBO Journal, vol. 6, no. 1, pp. 49–54, 1987.
[9]  G. Li, W. F. Pralong, D. Pittet, G. W. Mayr, W. Schlegel, and C. B. Wollheim, “Inositol tetrakisphosphate isomers and elevation of cytosolic Ca2+ in vasopressin-stimulated insulin-secreting RINm5F cells,” Journal of Biological Chemistry, vol. 267, no. 7, pp. 4349–4356, 1992.
[10]  F. Grases, P. Sanchis, J. Perello et al., “Phytate reduces age-related cardiovascular calcification,” Frontiers in Bioscience, vol. 13, no. 18, pp. 7115–7122, 2008.
[11]  M. K. Sudheer, B. R. Sridhar, S. K. Babu, P. M. Bhilegaonkar, A. Shirwaikar, and M. K. Unnikrishnan, “Antiinflammatory and antiulcer activities of phytic acid in rats,” Indian Journal of Experimental Biology, vol. 42, no. 2, pp. 179–185, 2004.
[12]  D. W. Kamp, V. A. Israbian, A. V. Yeldandi, R. J. Panos, P. Graceffa, and S. A. Weitzman, “Phytic acid, an iron chelator, attenuates pulmonary inflammation and fibrosis in rats after intratracheal instillation of asbestos,” Toxicologic Pathology, vol. 23, no. 6, pp. 689–695, 1995.
[13]  A. M. Minihane and G. Rimbach, “Iron absorption and the iron binding and anti-oxidant properties of phytic acid,” International Journal of Food Science and Technology, vol. 37, no. 7, pp. 741–748, 2002.
[14]  J. M. Storey and E. Bailey, “Effect of streptozotocin diabetes and insulin administration on some liver enzyme activities in the post-weaning rat,” Enzyme, vol. 23, no. 6, pp. 382–387, 1978.
[15]  L. L. Dilworth, F. O. Omoruyi, O. R. Simon, E. Y. S. A. Morrison, and H. N. Asemota, “The effect of phytic acid on the levels of blood glucose and some enzymes of carbohydrate and lipid metabolism,” West Indian Medical Journal, vol. 54, no. 2, pp. 102–106, 2005.
[16]  M. Torre, A. R. Rodriguez, and F. Saura-Calixto, “Effects of dietary fiber and phytic acid on mineral availability,” Critical Reviews in Food Science and Nutrition, vol. 30, no. 1, pp. 1–22, 1991.
[17]  F. Omoruyi and I. Adamson, “Digestive and hepatic enzymes in streptozotocin-induced diabetic rats fed supplements of dikanut (Irvingia gabonensis) and cellulose,” Annals of Nutrition and Metabolism, vol. 37, no. 1, pp. 14–23, 1993.
[18]  F. Omoruyi and I. Adamson, “Effect of supplements of dikanut (Irvingia gabonensis) and cellulose on plasma lipids and composition of hepatic phospholipids in streptozotocin- induced diabetic rat,” Nutrition Research, vol. 14, no. 4, pp. 537–544, 1994.
[19]  S. Onomi, Y. Okazaki, and T. Katayama, “Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 6, pp. 1379–1381, 2004.
[20]  G. P. McGregor, J. F. Desaga, K. Ehlenz et al., “Radioimmunological measurement of leptin in plasma of obese and diabetic human subjects,” Endocrinology, vol. 137, no. 4, pp. 1501–1504, 1996.
[21]  S. Engeli, M. Feldpausch, K. Gorzelniak et al., “Association between adiponectin and mediators of inflammation in obese women,” Diabetes, vol. 52, no. 4, pp. 942–947, 2003.
[22]  C. Zoccali, F. Mallamaci, G. Tripepi et al., “Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease,” Journal of the American Society of Nephrology, vol. 13, no. 1, pp. 134–141, 2002.
[23]  P. Wiedmer, R. Nogueiras, F. Broglio, D. D'Alessio, and M. H. Tsch?p, “Ghrelin, obesity and diabetes,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 10, pp. 705–712, 2007.
[24]  D. E. Cummings, J. Q. Purnell, R. S. Frayo, K. Schmidova, B. E. Wisse, and D. S. Weigle, “A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans,” Diabetes, vol. 50, no. 8, pp. 1714–1719, 2001.
[25]  L. U. Thompson, “Antinutrients and blood glucose,” Food Technology, vol. 42, pp. 123–132, 1988.
[26]  R. Patel, M. D. Yago, E. M. Victoria, A. Shervington, and J. Singh, “Mechanism of exocrine pancreatic insufficiency in streptozotocin-induced diabetes mellitus in rat: effect of cholecystokinin-octapeptide,” Molecular and Cellular Biochemistry, vol. 261, no. 1, pp. 83–89, 2004.
[27]  A. Kuppusamy, U. Muthusamy, S. Andichetiar Thirumalaisamy, S. Varadharajan, K. Ramasamy, and S. Ramanathan, “In vitro (α-glucosidase and α-amylase inhibition) and in vivo antidiabetic property of phytic acid (IP6) in streptozotocin-nicotinamide- induced type 2 diabetes mellitus (NIDDM) in rats,” Journal of Complementary and Integrative Medicine, vol. 8, no. 1, pp. 1553–3840, 2011.
[28]  S.-H. Lee, H.-J. Park, S.-Y. Cho et al., “Effects of dietary phytic acid on serum and hepatic lipid levels in diabetic KK mice,” Nutrition Research, vol. 25, no. 9, pp. 869–876, 2005.
[29]  N. Liu, Y. Ru, J. Wang, and T. Xu, “Effect of dietary sodium phytate and microbial phytase on the lipase activity and lipid metabolism of broiler chickens,” British Journal of Nutrition, vol. 103, no. 6, pp. 862–868, 2010.
[30]  C. Yuangklang, T. Wensing, A. G. Lemmens, S. Jittakhot, and A. C. Beynen, “Effect of sodium phytate supplementation on fat digestion and cholesterol metabolism in female rats,” Journal of Animal Physiology and Animal Nutrition, vol. 89, no. 11-12, pp. 373–378, 2005.
[31]  P. S. M. Prince and N. K. Kannan, “Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats,” Journal of Pharmacy and Pharmacology, vol. 58, no. 10, pp. 1373–1383, 2006.
[32]  T. Rydgren and S. Sandler, “The protective effect of simvastatin against low dose streptozotocin induced type 1 diabetes in mice is independent of inhibition of HMG-CoA reductase,” Biochemical and Biophysical Research Communications, vol. 379, no. 4, pp. 1076–1079, 2009.
[33]  K. Karthikesan, L. Pari, and V. P. Menon, “Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents,” Chemico-Biological Interactions, vol. 188, no. 3, pp. 643–650, 2010.
[34]  M. R. Pincus and J. R. Sehaffner, Assessment of Liver Function in Clinical Diagnosis and Management By Laboratory Methods, Saunders, Philadelphia, Pa, USA, 1996.
[35]  A. Roeske-Nielsen, P. Fredman, J. E. Mansson, K. Bendtzen, and K. Buschard, “Beta-galactosylceramide increases and sulfatide decreases cytokine and chemokine production in whole blood cells,” Immunology Letters, vol. 91, no. 2-3, pp. 205–211, 2004.
[36]  K. Kakisaka and Y. Takikawa, “Elevation of serum cytokines preceding elevation of liver enzymes in a case of drug-induced liver injury,” Hepatology Research, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413