Methotrexate is an effective anticancer and immunosuppressive agent. However, nephrotoxicity is one of the complications of its use. On the other hand, curcumin, a naturally occurring polyphenolic compound, is reported to have antioxidant and anti-inflammatory properties. Those two properties are likely to prevent methotrexate-induced nephrotoxicity. The aim of this study is to evaluate the possible protective effect of curcumin against methotrexate-induced nephrotoxicity and delineate various mechanism(s) underlies this effect in rats. Nephrotoxicity was induced in Wistar rats by intraperitoneal administration of methotrexate (7?mg/kg/day) for three consecutive days. Curcumin administration in methotrexate-intoxicated rats resulted in nephroprotective effects as evidenced by the significant decrease in levels of serum creatinine and urea as well as renal malondialdehyde, nitric oxide, and tumor necrosis factor-α with a concurrent increase in renal glutathione peroxidase and superoxide dismutase activities compared to nephrotoxic untreated rats. Additionally, immunohistochemical analysis demonstrated that curcumin treatment markedly reduced cyclooxygenase-2 expression. Histopathological examination confirmed the protective effects of curcumin. In conclusion, curcumin protected rats from methotrexate nephrotoxicity, at least in part, through its antioxidant and anti-inflammatory activities. 1. Introduction Methotrexate, a folic acid antagonist, is widely used in the treatment of various malignancies and inflammatory diseases. However, nephrotoxicity is an important adverse effect of methotrexate therapy [1]. The pathogenesis of methotrexate nephrotoxicity involves multiple pathways, including oxidative stress and inflammation [2, 3]. Several agents have been used, with various degrees of success, to ameliorate or prevent methotrexate nephrotoxicity [2–4]. Curcumin is an active polyphenolic constituent from Curcuma longa with notable antioxidant and anti-inflammatory properties [5, 6] that render it an attractive candidate for protection against methotrexate nephrotoxicity. Curcumin has shown renal protective properties against gentamicin- and cisplatin- induced renal toxicities ([7] and [8], resp.) as well as diabetic nephropathy [9]. The present study therefore was designed to assess the possible renoprotective effect of curcumin and to examine the underlying mechanism(s) responsible for this effect in a rat model of methotrexate-induced nephrotoxicity. The mechanism of renoprotection was evaluated by assessing the oxidative stress (i.e.,
References
[1]
B. C. Widemann and P. C. Adamson, “Understanding and managing methotrexate nephrotoxicity,” Oncologist, vol. 11, no. 6, pp. 694–703, 2006.
[2]
I. Asvadi, B. Hajipour, A. Asvadi, N. A. Asl, L. Roshangar, and A. Khodadadi, “Protective effect of pentoxyfilline in renal toxicity after methotrexate administration,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 9, pp. 1003–1009, 2011.
[3]
E. Devrim, R. ?etin, B. Kili?o?lu, B. Imge Ergüder, A. Avci, and I. Durak, “Methotrexate causes oxidative stress in rat kidney tissues,” Renal Failure, vol. 27, no. 6, pp. 771–773, 2005.
[4]
Y. Ca?lar, H. Ozgür, I. Matur, et al., “Ultrastructural evaluation of the effect of N-acetylcysteine on methotrexate nephrotoxicity in rats,” Histology and Histopathology, vol. 28, no. 7, pp. 865–874, 2013.
[5]
V. Soetikno, F. R. Sari, A. P. Lakshmanan, et al., “Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway,” Molecular Nutrition & Food Research, vol. 57, no. 9, pp. 1649–1659, 2013.
[6]
S. Shishodia, “Molecular mechanisms of curcumin action: gene expression,” BioFactors, vol. 39, no. 1, pp. 37–55, 2013.
[7]
R. Manikandan, M. Beulaja, R. Thiagarajan, A. Priyadarsini, R. Saravanan, and M. Arumugam, “Ameliorative effects of curcumin against renal injuries mediated by inducible nitric oxide synthase and nuclear factor kappa B during gentamicin-induced toxicity in Wistar rats,” European Journal of Pharmacology, vol. 670, no. 2-3, pp. 578–585, 2011.
[8]
M. Ueki, M. Ueno, J. Morishita, and N. Maekawa, “Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice,” Journal of Bioscience and Bioengineering, vol. 115, no. 5, pp. 547–551, 2013.
[9]
J. Huang, K. Huang, T. Lan, et al., “Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway,” Molecular and Cellular Endocrinology, vol. 365, no. 2, pp. 231–240, 2013.
[10]
M. Waseem, P. Kaushik, and S. Parvez, “Mitochondria-mediated mitigatory role of curcumin in cisplatin-induced nephrotoxicity,” Cell Biochemistry and Function, 2013.
[11]
P. Abraham, V. K. Kolli, and S. Rabi, “Melatonin attenuates methotrexate-induced oxidative stress and renal damage in rats,” Cell Biochemistry and Function, vol. 28, no. 5, pp. 426–433, 2010.
[12]
J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology C, vol. 52, pp. 302–310, 1978.
[13]
K. V. Sastry, R. P. Moudgal, J. Mohan, J. S. Tyagi, and G. S. Rao, “Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy,” Analytical Biochemistry, vol. 306, no. 1, pp. 79–82, 2002.
[14]
E. Tapia, V. Soto, K. M. Ortiz-Vega, et al., “Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 269039, 14 pages, 2012.
[15]
M. Toka?, G. Taner, S. Ayd?n, et al., “Protective effects of curcumin against oxidative stress parameters and DNA damage in the livers and kidneys of rats with biliary obstruction,” Food and Chemical Toxicology, 2013.
[16]
J. S. Christo, A. M. Rodrigues, M. G. Mouro et al., “Nitric oxide (NO) is associated with gentamicin (GENTA) nephrotoxicity and the renal function recovery after suspension of GENTA treatment in rats,” Nitric Oxide, vol. 24, no. 2, pp. 77–83, 2011.
[17]
L. M. Walker, P. D. Walker, S. Z. Imam, S. F. Ali, and P. R. Mayeux, “Evidence for peroxynitrite formation in renal ischemia-reperfusion injury: studies with the inducible nitric oxide synthase inhibitor L-N6-(1-iminoethyl)lysine,” Journal of Pharmacology and Experimental Therapeutics, vol. 295, no. 1, pp. 417–422, 2000.
[18]
M. S. Goligorsky, S. V. Brodsky, and E. Noiri, “Nitric oxide in acute renal failure: NOS versus NOS,” Kidney International, vol. 61, no. 3, pp. 855–861, 2002.
[19]
C. Bubici, S. Papa, K. Dean, and G. Franzoso, “Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance,” Oncogene, vol. 25, no. 51, pp. 6731–6748, 2006.
[20]
H. Kleinert, A. Pautz, K. Linker, and P. M. Schwarz, “Regulation of the expression of inducible nitric oxide synthase,” European Journal of Pharmacology, vol. 500, no. 1–3, pp. 255–266, 2004.
[21]
S. S. Ghosh, R. Krieg, H. D. Massey et al., “Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5/6 nephrectomized rats: role of phospholipase and cyclooxygenase,” American Journal of Physiology, vol. 302, no. 4, pp. F439–F454, 2012.