全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative In Vitro Effects of Calcineurin Inhibitors on Functional Vascular Relaxations of Both Rat Thoracic and Abdominal Aorta

DOI: 10.1155/2013/718313

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background and Aim. Calcineurin inhibitors (CNIs) have shown to develop hypertension in transplant patients. The in vitro incubation effects of cyclosporine (CsA) and tacrolimus (Tac) on vascular relaxations of rat thoracic aorta (TA) and abdominal aorta (AA) need to be investigated. Methods. The optimal concentrations of CsA (1.0?mg/mL) and Tac (0.1?mg/mL) used to compare endothelium-dependent (acetylcholine (ACh)) and endothelium-independent (sodium nitroprusside (SNP)) vascular relaxation against the agonists in phenylephrine (PE-) constricted TA and AA of 13-week-old male Sprague Dawley rats ( ). Results. In TA, the maximal vasodilator response elicited by ACh (control: 98%) was significantly ( ) inhibited by CsA ( 10%) but not by Tac ( 97%). In AA, (control: IC50 50?nM; 100%) CsA (IC50 7?μM; ( ) showed strong sensitivity to inhibit ACh-dependent vascular relaxation than Tac (IC50 215?nM ( ); 98%). CsA and Tac failed to affect the inhibitory responses to SNP in both TA and AA. Conclusion. CsA exerts profound inhibitory effect on endothelium-dependent vasodilatation as compared to Tac in both TA and AA. Aortic rings from the thoracic region are more sensitive to CNIs, since the vasodilator response to ACh is solely mediated by NO while in the AA, ACh likely recruits other endothelial mediators besides NO to maintain vasodilatation. 1. Introduction The post-transplantation vasculopathy is an important complication after organ transplantation [1]. The initial pathological event is thought to be an allograft endothelial dysfunction, a condition in which there is decreased generation of endothelium-derived relaxing factor, nitric oxide (NO). Either its synthesis is reduced or its increased quenching by oxidative stress is thought to result in increased vascular smooth muscle (VSM) tone and elevation in blood pressure that is accompanied by endothelial damage and loss of homeostatic regulatory property of the vascular wall [2]. Diminished NO function is thought to play a major role in the progression of post-transplantation vasculopathy [3]. Transplantation immunosuppressants such as calcineurin inhibitors (CNIs) have substantial effects on vascular reactivity, especially on NO synthesis [3]. The main two CNI drugs namely, cyclosporine A (CsA) and tacrolimus (Tac), have been suggested to impair vascular endothelial function via decreased generation of NO release along with increased generation vasoconstrictor peptide, endothelin-1 (ET-1) that leads to elevated vascular tone and resultant hypertension [4–8]. It is now well accepted that these effects of

References

[1]  M. Weis and W. von Scheidt, “Cardiac allograft vasculopathy: a review,” Circulation, vol. 96, no. 6, pp. 2069–2077, 1997.
[2]  Z. Liu, S. M. Wildhirt, S. Weismüller, C. Schulze, N. Conrad, and B. Reichart, “Nitric oxide and endothelin in the development of cardiac allograft vasculopathy. Potential targets for therapeutic interventions,” Atherosclerosis, vol. 140, no. 1, pp. 1–14, 1998.
[3]  M. Weis, S. M. Wildhirt, C. Schulze et al., “Impact of immunosuppression on coronary endothelial function after cardiac transplantation,” Transplantation Proceedings, vol. 30, no. 3, pp. 871–872, 1998.
[4]  B. B. K. Chan, J. A. Kern, T. L. Flanagan, I. L. Kron, and C. G. Tribble, “Effects of in vivo cyclosporine administration on endothelium-dependent responses in isolated vascular rings,” Circulation, vol. 86, supplement 5, pp. II295–II299, 1992.
[5]  K. Sudhir, J. S. MacGregor, T. DeMarco et al., “Cyclosporine impairs release of endothelium-derived relaxing factors in epicardial and resistance coronary arteries,” Circulation, vol. 90, no. 6, pp. 3018–3023, 1994.
[6]  R. Cartier, P. Mathieu, D. Bouchard, and J. Buluran, “Effects of cyclosporine A dosage on vascular tone of the rat thoracic aorta,” Annales de Chirurgie, vol. 50, no. 8, pp. 667–672, 1996.
[7]  Y. Takeda, I. Miyamori, K. Furukawa, S. Inaba, and H. Mabuchi, “Mechanisms of FK 506-induced hypertension in the rat,” Hypertension, vol. 33, no. 1 I, pp. 130–136, 1999.
[8]  A. O. Lungu, Z. Jin, H. Yamawaki, T. Tanimoto, C. Wong, and B. C. Berk, “Cyclosporin A inhibits flow-mediated activation of endothelial nitric-oxide synthase by altering cholesterol content in caveolae,” The Journal of Biological Chemistry, vol. 279, no. 47, pp. 48794–48800, 2004.
[9]  S. C. Textor, R. Wiesner, D. J. Wilson et al., “Systemic and renal hemodynamic differences between FK506 and cyclosporine in liver transplant recipients,” Transplantation, vol. 55, no. 6, pp. 1332–1339, 1993.
[10]  M. Verbeke, J. Van de Voorde, L. De Ridder, and N. Lameire, “Functional analysis of vascular dysfunction in cyclosporin treated rats,” Cardiovascular Research, vol. 28, no. 8, pp. 1152–1156, 1994.
[11]  M. Verbeke, J. Van de Voorde, L. De Ridder, and N. Lameire, “Regional differences in vasculotoxic effects of cyclosporin in rats,” Canadian Journal of Physiology and Pharmacology, vol. 73, no. 11, pp. 1661–1668, 1995.
[12]  R. L. Hopfner, R. V. Hasnadka, T. W. Wilson, J. R. McNeill, and V. Gopalakrishnan, “Insulin increases endothelin-1-evoked intracellular free calcium responses by increased ET(A)receptor expression in rat aortic smooth muscle cells,” Diabetes, vol. 47, no. 6, pp. 937–944, 1998.
[13]  A. Jadhav, W. Liang, J. Balsevich et al., “L-Tryptophan ethyl ester dilates small mesenteric arteries by inhibition of voltage-operated calcium channels in smooth muscle,” British Journal of Pharmacology, vol. 166, no. 1, pp. 232–242, 2012.
[14]  S. C. Textor, V. J. Canzanello, S. J. Taler et al., “Cyclosporine-induced hypertension after transplantation,” Mayo Clinic Proceedings, vol. 69, no. 12, pp. 1182–1193, 1994.
[15]  M. Marasà, G. Remuzzi, and P. Cravedi, “Hypertension after kidney transplantation: an important, but still neglected issue,” Journal of Hypertension, vol. 29, no. 12, pp. 2310–2311, 2011.
[16]  E. J. Hoorn, S. B. Walsh, J. A. McCormick, R. Zietse, R. J. Unwin, and D. H. Ellison, “Pathogenesis of calcineurin inhibitor-induced hypertension,” Journal of Nephrology, vol. 25, pp. 269–275, 2012.
[17]  F. Seibert, C. Behrendt, S. Schmidt, M. van der Giet, W. Zidek, and T. H. Westhoff, “Differential effects of cyclosporine and tacrolimus on arterial function,” Transplant International, vol. 24, no. 7, pp. 708–715, 2011.
[18]  S. M. Stepkowski, “Molecular targets for existing and novel immunosuppressive drugs,” Expert Reviews in Molecular Medicine, vol. 2, pp. 1–23, 2000.
[19]  A. R. Marks, “Cellular functions of immunophilins,” Physiological Reviews, vol. 76, no. 3, pp. 631–649, 1996.
[20]  T. Goto, T. Kino, H. Hatanaka et al., “FK 506: historical perspectives,” Transplantation Proceedings, vol. 23, no. 6, pp. 2713–2717, 1991.
[21]  J. Asbún-Bojalil, E. F. Castillo, B. A. Escalante, and C. Castillo, “Does segmental difference in α1-adrenoceptor subtype explain contractile difference in rat abdominal and thoracic aortae?” Vascular Pharmacology, vol. 38, no. 3, pp. 169–175, 2002.
[22]  A. J. Agnew, E. Robinson, C. M. McVicar et al., “The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling,” British Journal of Pharmacology, vol. 166, no. 1, pp. 327–338, 2012.
[23]  R. Zhang, H. H. Ran, Y. X. Zhang et al., “Farnesoid X receptor regulates vascular reactivity through nitric oxide mechanism,” Journal of Physiology and Pharmacology, vol. 63, pp. 367–372, 2012.
[24]  R. Busse, G. Edwards, M. Félétou, I. Fleming, P. M. Vanhoutte, and A. H. Weston, “EDHF: bringing the concepts together,” Trends in Pharmacological Sciences, vol. 23, no. 8, pp. 374–380, 2002.
[25]  R. A. Bobadilla, C. C. Henkel, E. C. Henkel, B. Escalante, and E. Hong, “Possible involvement of endothelium-derived hyperpolarizing factor in vascular responses of abdominal aorta from pregnant rats,” Hypertension, vol. 30, no. 3, pp. 596–602, 1997.
[26]  H. Tomioka, Y. Hattori, M. Fukao et al., “Relaxation in different-sized rat blood vessels mediated by endothelium- derived hyperpolarizing factor: importance of processes mediating precontractions,” Journal of Vascular Research, vol. 36, no. 4, pp. 311–320, 1999.
[27]  O. L. Woodman, O. Wongsawatkul, and C. G. Sobey, “Contribution of nitric oxide, cyclic GMP and K+ channels to acetylcholine-induced dilatation of rat conduit and resistance arteries,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 1-2, pp. 34–40, 2000.
[28]  C. Kwan, W. Zhang, S. Sim, T. Deyama, and S. Nishibe, “Vascular effects of Siberian ginseng (Eleutherococcus senticosus): endothelium-dependent NO- and EDHF-mediated relaxation depending on vessel size,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 369, no. 5, pp. 473–480, 2004.
[29]  C. M. Shing, R. G. Fassett, L. Brown, and J. S. Coombes, “The effects of immunosuppressants on vascular function, systemic oxidative stress and inflammation in rats,” Transplant International, vol. 25, no. 3, pp. 337–346, 2012.
[30]  J. Galle, C. Lehmann-Bodem, U. Hübner, A. Heinloth, and C. Wanner, “CyA and OxLDL cause endothelial dysfunction in isolated arteries through endothelin-mediated stimulation of O(2)(-) formation,” Nephrology Dialysis Transplantation, vol. 15, no. 3, pp. 339–346, 2000.
[31]  The US Multicenter FK506 Liver Study Group, “A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation,” The New England Journal of Medicine, vol. 331, no. 17, pp. 1110–1115, 1994.
[32]  L. G. Cook, V. L. Chiasson, C. Long, G. Wu, and B. M. Mitchell, “Tacrolimus reduces nitric oxide synthase function by binding to FKBP rather than by its calcineurin effect,” Kidney International, vol. 75, no. 7, pp. 719–726, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413