全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antimicrobial, Antioxidant, and Wound Healing Properties of Kigelia africana (Lam.) Beneth. and Strophanthus hispidus DC.

DOI: 10.1155/2013/692613

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microbial infections of various types of wounds are a challenge to the treatment of wounds and wound healing. The study was to investigate antimicrobial and antioxidant properties of methanol leaf and stem bark extracts of Kigelia africana and methanol leaf and root extracts of Strophanthus hispidus and also to determine wound healing properties of the extracts. The antimicrobial activities of the methanol extracts were determined against two Gram-positive and two Gram-negative bacteria and a fungus using agar diffusion and micro-dilution methods. The antioxidant activity was determined using 1,1-diphenyl-2-picryl–hydrazyl (DPPH) method. The influence of the extracts on rate of wound closure was investigated using the excision wound model and histopathological investigation of treated and untreated wound tissues performed. The MICs of leaf extract of K. africana against test organisms were 2.5–7.5?mg/mL and stem bark extract were 2.25–7.5?mg/mL. The leaf extract of S. hispidus had MIC range of 2.5–7.5?mg/mL and 2.5–10?mg/mL for root extract. The IC50 of leaf and stem bark extracts of K. africana were 56.9 and 13.7?μg/mL, respectively and leaf and root of S. hispidus were 49.8 and 45.1?μg/mL, respectively. K. africana extracts (7.5% w/w) showed significant ( ) wound contraction at day 7 with 72% of wound closure whiles significant ( ) wound contractions were observed on day 11 for stem bark of K. africana, leaf and root extracts of S. hispidus. Wound tissues treated with the extracts showed improved collagenation, re-epitheliazition and rapid granulation formation compared with untreated wound tissues. The extracts were found to contain alkaloids, saponins, tannins, flavonoids, carbohydrates, and sapogenetic glycosides. The HPLC finger-printing of the extracts were developed. The leaf, stem bark and root extracts of K. africana and S. hispidus exhibited antimicrobial, antioxidant, and enhanced wound healing properties and these may justify the medicinal uses of the plants for treatment of microbial infections and wounds. 1. Introduction Wound is most commonly used when referring to injury to the skin or underlying tissues or organs by a blow, cut, missile, or stab. Wound also includes injury to the skin caused by chemicals, cold, friction, heat, pressure and rays, and manifestation in the skin of internal conditions, for example, pressure sores and ulcers [1]. Wounds have a tremendous impact on the healing healthcare economy. Chronic wounds represent a major health burden and drain on the healthcare resources in the world including Ghana [2]. A major

References

[1]  D. L. Krasner, G. T. Rodeheaver, and R. G. Sibbald, Chronic Wound Care: A Clinical Source Book for Health Professionals, HMP Communications, Malvern, Ala, USA, 4th edition, 2007.
[2]  C. Agyare, A. Asase, M. Lechtenberg, M. Niehues, A. Deters, and A. Hensel, “An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana,” Journal of Ethnopharmacology, vol. 125, no. 3, pp. 393–403, 2009.
[3]  P. J. Houghton, P. J. Hylands, A. Y. Mensah, A. Hensel, and A. M. Deters, “In vitro tests and ethnopharmacological investigations: wound healing as an example,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 100–107, 2005.
[4]  A. Martin, “The use of antioxidants in healing,” Dermatological Surgery, vol. 22, no. 2, pp. 156–160, 1996.
[5]  F. R. Irvine, Woody Plants of Ghana, Oxford University Press, 1961.
[6]  P. J. Houghton, “The sausage tree (Kigelia pinnata): ethnobotany and recent scientific work,” South African Journal of Botany, vol. 68, no. 1, pp. 14–20, 2002.
[7]  P. Picerno, G. Autore, S. Marzocco, M. Meloni, R. Sanogo, and R. P. Aquino, “Anti-inflammatory activity of verminoside from Kigelia africana and evaluation of cutaneous irritation in cell cultures and reconstituted human epidermis,” Journal of Natural Products, vol. 68, no. 11, pp. 1610–1614, 2005.
[8]  H. Wagner and S. Bladt, Plant Drug Analysis: A Thin Layer Chromatography, Springer, New York, NY, USA, 2nd edition, 1996.
[9]  C. Agyare, G. A. Koffuor, V. E. Boamah, F. Adu, K. B. Mensah, and L. Adu-Amoah, “Antimicrobial and anti-inflammatory activities of Pterygota macrocarpa and Cola gigantea (Sterculiaceae),” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 902394, 9 pages, 2012.
[10]  H. Glasl, “Zur photometrie in der drogenstandiserung,” Deutsche Apotheker Zeitung, vol. 123, no. 42, pp. 1979–1987, 1983.
[11]  J. N. Eloff, “A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria,” Planta Medica, vol. 64, no. 8, pp. 711–713, 1998.
[12]  National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi: Proposed standard. NCCLS document M38-P, National Committee for Clinical Laboratory Standards, Wayne, Pa, USA, 1998.
[13]  M. V. Berridge, P. M. Herst, and A. S. Tan, “Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction,” Biotechnology Annual Review, vol. 11, pp. 127–152, 2005.
[14]  R. Chizzola, H. Michitsch, and C. Franz, “Antioxidative properties of Thymus vulgaris leaves: comparison of different extracts and essential oil chemotypes,” Journal of Agricultural and Food Chemistry, vol. 56, no. 16, pp. 6897–6904, 2008.
[15]  T. Bhakta, P. K. Mukherjee, K. Mukherjee, M. Pal, and B. P. Saha, “Studies on in vivo wound healing activity of Cassia fistula linn. Leaves (Leguminosae) in rats,” Natural Product Sciences, vol. 4, no. 2, pp. 84–87, 1998.
[16]  Y. Shivhare, P. K. Singour, U. K. Patil, and R. S. Pawar, “Wound healing potential of methanolic extract of Trichosanthes dioica Roxb (fruits) in rats,” Journal of Ethnopharmacology, vol. 127, no. 3, pp. 614–619, 2010.
[17]  F. Sadaf, R. Saleem, M. Ahmed, S. I. Ahmad, and Z. Navaid-ul, “Healing potential of cream containing extract of Sphaeranthus indicus on dermal wounds in Guinea pigs,” Journal of Ethnopharmacology, vol. 107, no. 2, pp. 161–163, 2006.
[18]  G. C. Jagetia and G. K. Rajanikant, “Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody γ-irradiation,” Plastic and Reconstructive Surgery, vol. 115, no. 2, pp. 515–528, 2005.
[19]  G. A. Ayoola, A. D. Folawewo, S. A. Adesegun, O. O. Abioro, A. A. Adepoju-Bello, and H. A. B. Coker, “Phytochemical and antioxidant screening of some plants of Apocynaceae from south eastern Nigeria,” African Journal of Plant Science, vol. 2, no. 9, pp. 124–128, 2008.
[20]  B. S. Nayak, S. Sandiford, and A. Maxwell, “Evaluation of the wound-healing activity of ethanolic extract of Morinda citrifolia L. leaf,” Evidence-based Complementary and Alternative Medicine, vol. 6, no. 3, pp. 351–356, 2009.
[21]  T. Okuda, “Systematics and health effects of chemically distinct tannins in medicinal plants,” Phytochemistry, vol. 66, no. 17, pp. 2012–2031, 2005.
[22]  O. A. Binutu, K. E. Adesogan, and J. I. Okogun, “Antibacterial and antifungal compounds from Kigelia pinnata,” Planta Medica, vol. 62, no. 4, pp. 352–353, 1996.
[23]  T. Taguri, T. Tanaka, and I. Kouno, “Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease,” Biological and Pharmaceutical Bulletin, vol. 27, no. 12, pp. 1965–1969, 2004.
[24]  R. A. Frantz, “Identifying infection in chronic wounds,” Nursing, vol. 35, no. 7, p. 73, 2005.
[25]  W. Fabry, P. O. Okemo, and R. Ansorg, “Antibacterial activity of East African medicinal plants,” Journal of Ethnopharmacology, vol. 60, no. 1, pp. 79–84, 1998.
[26]  J. W. Gathirwa, G. M. Rukunga, E. N. M. Njagi et al., “In vitro anti-plasmodial and in vivo anti-malarial activity of some plants traditionally used for the treatment of malaria by the Meru community in Kenya,” Journal of Natural Medicines, vol. 61, no. 3, pp. 261–268, 2007.
[27]  C. Agyare, M. Lechtenberg, A. Deters, F. Petereit, and A. Hensel, “Ellagitannins from Phyllanthus muellerianus (Kuntze) Exell.: geraniin and furosin stimulate cellular activity, differentiation and collagen synthesis of human skin keratinocytes and dermal fibroblasts,” Phytomedicine, vol. 18, no. 7, pp. 617–624, 2011.
[28]  S. N. Leite, G. Palhano, S. Almeida, and M. W. Biavatti, “Wound healing activity and systemic effects of Vernonia scorpioides extract in guinea pig,” Fitoterapia, vol. 73, no. 6, pp. 496–500, 2002.
[29]  P. Hupkens, H. Boxma, and J. Dokter, “Tannic acid as a topical agent in burns: historical considerations and implications for new developments,” Burns, vol. 21, no. 1, pp. 57–61, 1995.
[30]  C. K. Sen, S. Khanna, G. Gordillo, D. Bagchi, M. Bagchi, and S. Roy, “Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm,” Annals of the New York Academy of Sciences, vol. 957, pp. 239–249, 2002.
[31]  M. Chaudhari and S. Mengi, “Evaluation of phytoconstituents of Terminalia arjuna for wound healing activity in rats,” Phytotherapy Research, vol. 20, no. 9, pp. 799–805, 2006.
[32]  P. K. Mukherjee, R. Verpoorte, and B. Suresh, “Evaluation of in-vivo wound healing activity of Hypericum patulum (Family: Hypericaceae) leaf extract on different wound model in rats,” Journal of Ethnopharmacology, vol. 70, no. 3, pp. 315–321, 2000.
[33]  A. N. Rashed, F. U. Afifi, and A. M. Disi, “Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1,” Journal of Ethnopharmacology, vol. 88, no. 2-3, pp. 131–136, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413