全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Theoretical Study on the Static (Hyper)Polarizabilities of α-t-Bu-ω-CN-Poly(methylphenyl)silane

DOI: 10.1155/2013/905910

Full-Text   Cite this paper   Add to My Lib

Abstract:

The static linear and nonlinear optical properties of the σ-conjugated polymer α-t-Bu-ω-CN-poly(methylphenyl)silane (PMS) are studied at the Coupled-Perturbed Hartree-Fock (CPHF) level with 6-31+G(d) basis set. The calculated results reveal that the static first hyperpolarizabilities of this system increase with the main chain length and have a good agreement with experiments. The (hyper)polarizabilities per unit cell have been extrapolated to infinite chain limit and a comparison is made to those of polysilane and polyacetylene (PA). Besides, other structural properties depending on the σ-conjugated Si–Si skeleton length are investigated as well. Electron correlation effect is estimated and it turns out that the MP2 static first hyperpolarizability is about times larger than the corresponding CPHF value for the polymer with . 1. Introduction In recent years, polysilanes have attracted increasingly extensive attention due to their unique physical and chemical properties resulting from σ-electrons delocalized along the silicon backbone. In this regard, they have resulted in a variety of technological applications, such as conductor and semiconductor [1], photoconductive materials [2], organic multilayer, light emitting diodes (LEDs) [3], high-density optical data storage materials [4], electro luminescence (EL) devices [5, 6], and nonlinear optical (NLO) materials [7, 8]. The polysilanes represent a completely new class of potentially interesting nonlinear optical (NLO) materials, and in contrast to the classical π-conjugated polymers, their physical, chemical, and optical properties show significant differences. Polysilanes are linear polymers of silicon, and the σ-electrons of the polymer backbone are delocalized. This σ-conjugation gives rise to electronic properties that allow for possible applications as electroluminescent, nonlinear, optical, lithographic, and semiconductor materials. The σ-electrons delocalization associated with the phenomenon, in which the silicon backbone itself is a chromophore, greatly influences the optical properties of polysilanes. Therefore, in spite of saturation of all the Si atoms on the main chain, polysilanes have strong absorption in the UV in the region of 250–400?nm, which is attributed to the σ-σ* transition or the σ3d transition and relevant to the configuration and length of the Si–Si backbone. As NLO materials, in comparison with π-conjugated carbon-backbone polymers, polysilanes own many unique advantages; for example, they have optical transparency in the visible spectrum, their UV absorption peak can be

References

[1]  S. Mimura, H. Naito, Y. Kanemitsu, K. Matsukawa, and H. Inoue, “Optical properties of (organic polysilane)-(inorganic matrix) hybrid thin films,” Journal of Luminescence, vol. 87, pp. 715–717, 2000.
[2]  K. Matsukawa, T. Tamai, and H. Inoue, “Photoconductive properties of polysilane copolymers with pendant siloxane groups,” Applied Physics Letters, vol. 77, no. 5, pp. 675–677, 2000.
[3]  A. Sharma, M. Katiyar, Deepak, S. Seki, and S. Tagawa, “Room temperature ultraviolet emission at 357?nm from polysilane based organic light emitting diode,” Applied Physics Letters, vol. 88, no. 14, Article ID 143511, 2006.
[4]  M. Hiramoto, Y. Sakata, and M. Yokoyama, “Patterned emission in organic electroluminescent device using photodecomposition of polysilane film by UV light,” Japanese Journal of Applied Physics A, vol. 35, no. 9, pp. 4809–4812, 1996.
[5]  L. Sacarescu, I. Mangalagiu, M. Simionescu, G. Sacarescu, and R. Ardeleanu, “Polysilanes. A new route toward high performance EL devices,” Macromolecular Symposia, vol. 267, no. 1, pp. 123–128, 2008.
[6]  K. Ebihara, S. Matsushita, S. Koshihara et al., “Ultraviolet luminescence and electro-luminescence of polydihexylsilane,” Journal of Luminescence, vol. 72–74, pp. 43–45, 1997.
[7]  F. Kajzar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” Journal of Applied Physics, vol. 60, no. 9, pp. 3040–3044, 1986.
[8]  J. C. Baumert, G. C. Bjorklund, D. H. Jundt et al., “Temperature dependence of the third-order nonlinear optical susceptibilities in polysilanes and polygermanes,” Applied Physics Letters, vol. 53, no. 13, pp. 1147–1149, 1988.
[9]  D. B. Chen, G. Q. Li, and Z. H. Zhou, “Polysilanes-a class of new and distinct non-linear optical materials,” Chemical Research and Application, vol. 5, no. 2, pp. 8–14, 1993.
[10]  B. C. Shi, M. G. Zhang, G. W. Li, Y. Y. Li, M. Y. Wang, and Z. Li, “The synthesis of poly(methylphenyl)silane and investigation on its nonlinear optical properties,” Journal of NanJing Normal University, vol. 20, no. 3, pp. 26–29, 1997.
[11]  H. D. Tang, J. D. Luo, J. G. Qin, H. Kang, and C. Ye, “A novel synthetic strategy to develop second-order nonlinear optical polysilanes for potential photorefractive effects,” Macromolecular Rapid Communications, vol. 21, no. 16, pp. 1125–1129, 2000.
[12]  B. Champagne, E. A. Perpète, D. Jacquemin et al., “Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push-pull π-conjugated systems,” Journal of Physical Chemistry A, vol. 104, no. 20, pp. 4755–4763, 2000.
[13]  M. Torrent-Sucarrat, M. Solà, M. Duran, J. M. Luis, and B. Kirtman, “Basis set and electron correlation effects on ab initio electronic and vibrational nonlinear optical properties of conjugated organic molecules,” Journal of Chemical Physics, vol. 118, no. 2, pp. 711–718, 2003.
[14]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision E. 01, Gaussian Inc., Wallingford, Conn, USA, 2004.
[15]  A. E. Reed and F. Weinhold, “Natural bond orbital analysis of near-Hartree-Fock water dimer,” The Journal of Chemical Physics, vol. 78, no. 6, pp. 4066–4073, 1983.
[16]  A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural population analysis,” The Journal of Chemical Physics, vol. 83, no. 2, pp. 735–746, 1985.
[17]  R. D. Dennington II, T. A. Keith, J. Millam, A. B. Nielsen, A. J. Holder, and J. Hiscocks, GaussView, Version 5.0, Gaussian Inc., Wallingford, Conn, USA, 2009.
[18]  B. Kirtman and M. Hasan, “Linear and nonlinear polarizabilities of trans-polysilane from ab initio oligomer calculations,” The Journal of Chemical Physics, vol. 96, no. 1, pp. 470–479, 1992.
[19]  G. J. B. Hurst, M. Dupuis, and E. Clementi, “Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: applications to polyenes C4H6 to C22H24,” The Journal of Chemical Physics, vol. 89, no. 1, pp. 385–395, 1988.
[20]  J. Li, Z. Li, H. Tang, H. Zeng, and J. Qin, “Polysilanes with NLO chromophores as pendant groups by utilizing different synthetic strategies,” Journal of Organometallic Chemistry, vol. 685, no. 1-2, pp. 258–268, 2003.
[21]  J. M. Halbout and C. L. Tang, “Properties and applications of ureaeds,” in Nonlinear Optical Properties of Organic Molecular and Crystals, D. S. Chemla and J. Zyss, Eds., Academic Press, New York, NY, USA, 1987.
[22]  K. C. Wu, R. J. Sa, J. Li et al., “Theoretical study on the linear and nonlinear optical polarizabilities of urea clusters,” Jiegou Huaxue, vol. 20, no. 4, pp. 323–324, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413