全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fault Tolerant Ancillary Function of Power Converters in Distributed Generation Power System within a Microgrid Structure

DOI: 10.1155/2013/625130

Full-Text   Cite this paper   Add to My Lib

Abstract:

Distributed generation (DG) is deeply changing the existing distribution networks which become very sophisticated and complex incorporating both active and passive equipment. The simplification of their management can be obtained assuming a structure with small networks, namely, microgrids, reproducing, in a smaller scale, the structure of large networks including production, transmission, and distribution of the electrical energy. Power converters in distributed generation systems carry on some different ancillary functions as, for example, grid synchronization, islanding detection, fault ride through, and so on. In view of an optimal utilization of the generated electrical power, fault tolerant operation is to be considered as a suitable ancillary function for the next future. This paper presents a complete modeling of fault tolerant inverters able to simulate the main fault type occurrence and a control algorithm for fault tolerant converters suitable for microgrids. After the model description, formulated in terms of healthy device and leg binary variables, and the illustration of the fault tolerant control strategy, the paper shows how the control preserves power quality when the converter works in the linear range. The effectiveness of the proposed approach and control is shown through computer simulations and experimental results. 1. Introduction The exponential penetration of distributed generation (DG) is leading to enormous changes in the conception of the electrical system management. Involved networks are no longer to be regarded as passive components but integrate a growing number of functions such as load management, demand side management, and generation curtailment. Both standalone and grid connected microgrids, locally reproducing the structure of the whole generation and distribution system, may be a viable solution to enhance DG benefits, reducing at the same time the drawbacks of DG itself. All the future hypothetical scenarios will lead to great transformations in the design of power systems, with interesting implications in different fields of research [1–5]. Some problems which arise immediately are the presence of bidirectional power flow, the need for a different design of the power lines and transformers, the unwanted islanding conditions, a different protection philosophy, and the possibility of a fault tolerant operation to increase the level of continuity. This paper considers fault tolerant operation as a possible ancillary function. This additional function may be important in autonomous microgrid that cannot benefit from

References

[1]  F. Abrahamsen, F. Blaabjerg, and C. Klumpner, “Low inductive fuses in DC Link inverter application,” in Proceedings of the Power Conversion Intelligent Motion Conference (PCIM '00), Boston, Mass, USA, March 2000.
[2]  H. Chen, X. Zhang, S. Liu, and S. Yang, “Research on control strategies for distributed inverters in low voltage micro-grids,” in Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems (PEDG '10), pp. 748–752, Hefei, China, June 2010.
[3]  F. Blaabjerg, S. Freysson, H. Hansen, and S. Hansen, “A new optimized space-vector modulation strategy for a component-minimized voltage source inverter,” IEEE Transactions on Power Electronics, vol. 12, no. 4, pp. 704–714, 1997.
[4]  B. Wang, J. Wang, X. Sun, J. Wu, and W. Wu, “Phase multilevel inverter fault diagnosis and tolerant control technique,” in Proceedings of the CES/IEEE 5th International Power Electronics and Motion Control Conference (IPEMC '06), pp. 1–5, Shanghai, China, August 2006.
[5]  S. Duong, J. Schanen, C. Schaeffer, F. Sarrus, and J. de Palma, “IGBT protection by fuse calculation, behaviour and connection,” in Proceedings of the Conference Record of the IEEE Industry Applications Conference: 32nd IAS Annual Meeting (IAS '97), pp. 1228–1235, New Orleans, La, USA, 1997.
[6]  F. Genduso, R. Miceli, and S. Favuzza, “A Perspective on the future of distribution: smart grids, state of the art, benefits and research plans,” Energy and Power Engineering, vol. 5, no. 1, pp. 36–42, 2013.
[7]  J. Salmon, “Current overload protection features of hybrid inverter drives,” in Proceedings of the International Conference on Power Electronics and Motion Control, vol. 1, pp. 470–476, San Diego, CA, USA, November 1992.
[8]  M. Ma, L. Hu, A. Chen, and X. He, “Reconfiguration of carrier-based modulation strategy for fault tolerant multilevel inverters,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 2050–2060, 2010.
[9]  L. Zhou and K. Smedley, “A fault tolerant control system for hexagram inverter motor drive,” in Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC '10), pp. 264–270, Palm Springs, CA, USA, February 2010.
[10]  D. Sun and Y. He, “A modified direct torque control for PMSM under inverter fault,” in Proceedings of the 8th International Conference on Electrical Machines and Systems (ICEMS '05), vol. 3, pp. 2473–2473, Nanjing, China, 2005.
[11]  M. A. Parker, C. Ng, and L. Ran, “Fault-tolerant control for a modular generatorconverter scheme for direct-drive wind turbines,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 305–315, 2011.
[12]  O. Wallmark, L. Harnefors, and O. Carlson, “Post-fault operation of fault-tolerant inverters for PMSM drives,” in Proceedings of the European Conference on Power Electronics and Applications, pp. 1–10, Dresden, Germany, September 2005.
[13]  P. Correa, M. Pacas, and J. Rodriguez, “Modulation strategies for fault-tolerant operation of H-bridge multilevel inverters,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '06), pp. 1589–1594, Montreal, Quebec, Canada, July 2006.
[14]  F. Genduso, R. Miceli, and G. R. Galluzzo, “Flexible power converters for the fault tolerant operation of micro-grids,” in Proceedings of the 19th International Conference on Electrical Machines (ICEM '10), Rome, Italy, September 2010.
[15]  B. Xu, D. Yang, and X. Wang, “Neural network based fault diagnosis and reconfiguration method for multilevel inverter,” in Proceedings of the Chinese Control and Decision Conference (CCDC '08), pp. 564–568, Yantai, Shandong, China, July 2008.
[16]  S. Bolognani, M. Zordan, and M. Zigliotto, “Experimental fault-tolerant control of a PMSM drive,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1134–1141, 2000.
[17]  C. Cecati and N. Rotondale, “A double-PWM strategy for improved electric drive reliability,” in Proceedings of the Symposium on Power Electronics, Electrical Drives, Automation & Motion (SPEEDAM '02), vol. 1, pp. 25–30, Ravello, Italy, 2002.
[18]  A. O. di Tommaso, S. Favuzza, F. Genduso, R. Miceli, and G. R. Galluzzo, “Development of diagnostic systems for the fault tolerant operation of Micro-Grids,” in Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM '10), pp. 1645–1650, Pisa, Italy, June 2010.
[19]  L. Li-Chun, P. Ching-Tsai, and T. Lang-Jong, “Switching flow graph modeling technique for three phase inverter,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1603–1613, 2008.
[20]  S. Cuk and R. Middlebrook, “A general unified approach to modeling switching converters power stages,” in Proceedings of the IEEE Power Electronics Specialist Conference, pp. 18–34, 1976.
[21]  F. Genduso, R. Miceli, and G. R. Galluzzo, “Experimental validation of a general model for three phase inverters operating in healthy and faulty modes,” in Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM '12), pp. 1–6, May 2012.
[22]  P. Chen, Z. Ying, and D. Enzeng, “Fault detection algorithm of inverter based on singular value decomposition nonlinear filtering,” in Proceedings of the IEEE International Conference on Computer Science and Automation Engineering (CSAE '11), vol. 2, pp. 85–89, 2011.
[23]  D. Braun, D. Pixler, and P. LeMay, “IGBT module rupture categorization and testing,” in Proceedings of the IEEE Industry Applications Conference 32nd IAS Annual Meeting, pp. 1259–1266, October 1997.
[24]  C. Cecati, F. Genduso, R. Miceli, and G. R. Galluzzo, “A suitable control technique for fault-tolerant converters in distributed generation,” in Proceedings of the International Symposium on Industrial Electronics (ISIE' 11), pp. 107–112, Gdansk, Poland, June 2011.
[25]  F. Genduso and R. Miceli, “A general mathematical model for nonredundant fault-tolerant inverters,” in Proceedings of the IEEE International Electric Machines & Drives Conference (IEMDC '11), pp. 705–710, 2011.
[26]  F. Genduso and R. Miceli, “Power quality savings with con- trolled fault-tolerant power converters,” in Proceedings of the International Conference on Theory and Application of Modeling and Simulation in Electrical Power Engineering (ELECTRIMACS '11), pp. 1–6, Cergy Pontoise, France, June 2011.
[27]  A. D. Tommaso, F. Genduso, R. Miceli, and G. R. Galluzzo, “A general mathematical model for the simulation of common faults in three phase voltage source inverters,” International Journal of Automation and Power Engineering, vol. 2, pp. 1–11, 2013.
[28]  F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398–1409, 2006.
[29]  M. Liserre, P. Rodriguez, and R. Teodorescu, Grid Converter for Photovoltaic and Wind Power Systems, Wiley, IEEE press, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413