Water purification in the rural Honduras is a focus of the nonprofit organization Honduras Outreach Medical Brigade Relief Effort (HOMBRE). We assessed water filter use and tested filter microbiologic and clinical efficacy. A 22-item questionnaire assessed water sources, obtainment/storage, purification, and incidence of gastrointestinal disease. Samples from home clay-based filters in La Hicaca were obtained and paired with surveys from the same home. We counted bacterial colonies of four bacterial classifications from each sample. Sixty-five surveys were completed. Forty-five (69%) individuals used a filter. Fifteen respondents reported diarrhea in their home in the last 30 days; this incidence was higher in homes not using a filter. Thirty-three paired water samples and surveys were available. Twenty-eight samples (85%) demonstrated bacterial growth. A control sample was obtained from the local river, the principal water source; number and bacterial colony types were innumerable within 24 hours. Access to clean water, the use of filters, and other treatment methods differed within a geographically proximal region. Although the majority of the water samples failed to achieve bacterial eradication, water filters may sufficiently reduce bacterial coliform counts to levels below infectious inoculation. Clay water filters may be sustainable water treatment measures in resource poor settings. 1. Introduction Worldwide, over 1 billion people lack access to improved sources of drinking water. The lack of potable water greatly contributes to the presence of water-related illness, especially in developing countries [1]. Many communities in Honduras lack access to clean water. This is especially true in rural areas; approximately ninety-nine percent of the country’s urban population has access to improved water compared to eighty-two percent of the country’s rural population [2]. As much as ninety percent of rural water supplies in Honduras come from intermittent or unreliable sources [3], and water purification efforts reach sixty percent of the country’s total population, yet only fifty percent of the country’s rural communities [3]. Worldwide, diarrhea is among the leading causes of mortality in children under the age of five. Availability of clean water has previously been associated with lower mortality and a lower risk of child diarrhea [4]. The lack of clean drinking water in rural Honduran communities results in a large potential for the development of waterborne illnesses and potential death in infants and young children. Diarrhea accounted for seven
References
[1]
J. M. Brown, S. Proum, and M. D. Sobsey, “Escherichia coli in household drinking water and diarrheal disease risk: evidence from Cambodia,” Water Science and Technology, vol. 58, no. 4, pp. 757–763, 2008.
[2]
D. M. Johnson, D. R. Hokanson, Q. Zhang, K. D. Czupinski, and J. Tang, “Feasibility of water purification technology in rural areas of developing countries,” Journal of Environmental Management, vol. 88, no. 3, pp. 416–427, 2008.
[3]
Water for People. Our Work: Honduras, http://www.waterforpeople.org/programs/central-america/honduras.html.
[4]
G. Fink, I. Günther, and K. Hill, “The effect of water and sanitation on child health: evidence from the demographic and health surveys 1986–2007,” International Journal of Epidemiology, vol. 40, no. 5, pp. 1196–1204, 2011.
[5]
World Health Organization, World Health Statistics 2012, World Health Organization, Geneva, Switzerland, 2012.
[6]
V. A. Oyanedel-Craver and J. A. Smith, “Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment,” Environmental Science and Technology, vol. 42, no. 3, pp. 927–933, 2008.
[7]
M. D. Sobsey, Managing Water in the Home: Accelerated Health Gains from Improved Water Supply, WHO, Geneva, Switzerland, 2002.
[8]
T. F. Clasen, J. Brown, S. Collin, O. Suntura, and S. Cairncross, “Reducing diarrhea through the use of household-based ceramic water filters: a randomized, controlled trial in rural Bolivia,” The American Journal of Tropical Medicine and Hygiene, vol. 70, no. 6, pp. 651–657, 2004.
[9]
T. Clasen, W.-P. Schmidt, T. Rabie, I. Roberts, and S. Cairncross, “Interventions to improve water quality for preventing diarrhoea: systematic review and meta-analysis,” British Medical Journal, vol. 334, no. 7597, pp. 782–785, 2007.
[10]
La Hicaca, Northern Honduras. Map. N.d. La Hicaca, Honduras Weather Forecast. Web. February 2014.
[11]
R. Hemrajani, B. Morehouse, K. Elam et al., “Top health concerns in rural Honduras following the introduction of clay water filters,” International Journal of Infectious Diseases, vol. 14, no. 1, article e66, 2010.
[12]
G. Halder, G. Bearman, K. Sanogo, and M. P. Stevens, “Water sanitation, access, use and self-reported diarrheal disease in rural Honduras,” Journal of Rural and Remote Health, vol. 13, no. 2413, 2013.
[13]
T. F. Clasen, J. Brown, and S. M. Collin, “Preventing diarrhoea with household ceramic water filters: assessment of a pilot project in Bolivia,” International Journal of Environmental Health Research, vol. 16, no. 3, pp. 231–239, 2006.
[14]
Detection of Waterborne Coliforms and Fecal Coliforms with Coliscan Easygel, http://bellehavenwatershed.wikispaces.com/file/detail/Coliform+Bacteria+Instructions.pdf.
[15]
C. A. Pearson, M. P. Stevens, K. Sanogo, and G. Bearman, “Access and barriers to healthcare vary among three neighboring communities in northern Honduras,” International Journal of Family Medicine, vol. 2012, Article ID 298472, 6 pages, 2012.
[16]
J. B. Kaper, J. P. Nataro, and H. L. T. Mobley, “Pathogenic Escherichia coli,” Nature Reviews Microbiology, vol. 2, no. 2, pp. 123–140, 2004.
[17]
M. Tauschek, R. J. Gorrell, R. A. Strugnell, and R. M. Robins-Browne, “Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 7066–7071, 2002.
[18]
J. Brown and M. Sobesy, Use of Ceramic Water Filters in Cambodia, Water and Sanitation Program. UNICEF, 2007.
[19]
H. L. DuPont, S. B. Formal, R. B. Hornick et al., “Pathogenesis of Escherichia coli diarrhea,” The New England Journal of Medicine, vol. 285, no. 1, pp. 1–9, 1971.
[20]
World Health Organization, Microbial Fact Sheets, http://www.who.int/water_sanitation_health/dwq/gdwq3_11.pdf.