全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dry Sliding Wear Behaviour of Titanium (Grade 5) Alloy by Using Response Surface Methodology

DOI: 10.1155/2013/272106

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dry sliding wear behaviour of titanium (Grade 5) alloy has been investigated in order to highlight the mechanisms responsible for the poor wear resistance under different applied normal load, sliding speed, and sliding distance conditions. Design of experimental technique, that is, response surface methodology (RSM), has been used to accomplish the objective of the experimental study. The experimental plan for three factors at three levels using face-centre central composite design (CCD) has been employed. The results indicated that the specific wear rate increases with an increase in the applied normal load and sliding speed. However, it decreases with an increase in the sliding distance and a decrease in the sliding speed. The worn surfaces of the titanium alloy specimens were analyzed with the help of scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques. The predicted result also shows the close agreement with the experimental results and hence the developed models could be used for prediction of wear behaviour satisfactorily. 1. Introduction Titanium and its alloys exhibit a unique combination of mechanical, physical, and corrosion resistance properties which have made them desirable for critical application in aerospace industries and chemical and energy industries. In comparison to light weight alloys based on aluminum, magnesium and titanium alloys present interesting possibilities as tribomaterials, but they have not been widely investigated as bearing materials [1]. The tribological concerns for titanium alloy in aerospace components have focused mainly on their fretting behavior, leading to research on surface treatments like ion implantation and solid film lubrication [2, 3]. However, titanium and titanium alloys generally exhibit poor fretting, wear resistance, and tribological properties even when sliding against softer materials. One of the main reasons behind poor tribological properties of titanium alloys is the low thermal conductivity of these alloys [4]. This is due to the disruption of extremely thin, low shear strength, oxide film, consisting mainly of titanium dioxide (TiO2) which results in both depassivation and subsequent accelerated wear of the metallic surface due to the displaced particles of oxide giving rise to three-body abrasive wear [5–10]. The use of titanium alloys in sliding applications is limited because of their poor wear resistance [11]. This is due to low resistance of titanium alloys to plastic shearing as well as low protection by surface oxide

References

[1]  J. Qu, P. J. Blau, T. R. Watkins, O. B. Cavin, and N. S. Kulkarni, “Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces,” Wear, vol. 258, no. 9, pp. 1348–1356, 2005.
[2]  R. B. Waterhouse and A. Iwabuchi, “The effect of ion implantation on the fretting wear of four titanium alloys at temperatures up to C,” in Proceedings of the International Conference on Wear of Materials, pp. 471–484, ASME, New York, NY, USA, 1985.
[3]  K. G. Budinski, “Tribological properties of titanium alloys,” Wear, vol. 151, no. 2, pp. 203–217, 1991.
[4]  N. S. M. El-Tayeb, T. C. Yap, and P. V. Brevern, “Wear characteristics of titanium alloy Ti54 for cryogenic sliding applications,” Tribology International, vol. 43, no. 12, pp. 2345–2354, 2010.
[5]  J. Rieu, A. Pichat, L.-M. Rabbe, A. Rambert, C. Chabrol, and M. Robelet, “Structural modifications induced by ion implantation in metals and polymers used for orthopaedic prostheses,” Materials Science and Technology, vol. 8, no. 7, pp. 589–593, 1992.
[6]  R. A. Buchanan, E. D. Ridney Jr., and J. M. Williams, “Wear-accelerated corrosion of Ti-6A1-4V and nitrogen-ion-implanted Ti-6A1-4V: mechanisms and influence of fixed-stress magnitude,” Journal of Biomedical Materials Research, vol. 21, no. 3, pp. 367–377, 1987.
[7]  F. M. Kustas and M. S. Misra, “Friction and wear of titanium alloys,” in Friction, Lubrication, and Wear Technolog ASM Handbook, S. D. Henry and P. J. Blau, Eds., vol. 18, pp. 778–785, ASM International, Materials Park, Ohio, USA, 1992.
[8]  F. G. A. de Laat and T. Adams, Inhibiting the Wear and Galling Characteristics of Titanium, Metals Engineering Quarterly, The American Society for Metals, 1968.
[9]  J. A. Davidson, “Analysis of clinical and laboratory wear factors and the tribological performance of orthopaedic implants,” Japanese Journal of Tribology, vol. 37, no. 4, pp. 399–413, 1992.
[10]  P. D. Miller and J. W. Holladay, “Friction and wear properties of titanium,” Wear, vol. 2, no. 2, pp. 133–140, 1958.
[11]  K. G. Budinski, “Tribological properties of titanium alloys,” Wear, vol. 151, no. 2, pp. 203–217, 1991.
[12]  S. Yerramareddy and S. Bahadur, “Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V,” Wear, vol. 142, no. 2, pp. 253–263, 1991.
[13]  L. Ceschini, E. Lanzoni, C. Martini, D. Prandstraller, and G. Sambogna, “Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating,” Wear, vol. 264, no. 1-2, pp. 86–95, 2008.
[14]  H. Dong and T. Bell, “Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment,” Wear, vol. 238, no. 2, pp. 131–137, 2000.
[15]  H. Schmidt, A. Schminke, and D. M. Rück, “Tribological behaviour of ion-implanted Ti6A14V sliding against polymers,” Wear, vol. 209, no. 1-2, pp. 49–56, 1997.
[16]  C. Met, L. Vandenbulcke, and M. C. Sainte Catherine, “Friction and wear characteristics of various prosthetic materials sliding against smooth diamond-coated titanium alloy,” Wear, vol. 255, no. 7–12, pp. 1022–1029, 2003.
[17]  S. Krol, W. Grzesik, Z. Zalisz, and M. Hepner, “Frictional behaviour of oxygen diffusion hardened titanium in dry sliding against Co-28Cr-5W-4Fe-3Ni-1Si cobalt alloy,” Tribology International, vol. 37, no. 8, pp. 633–643, 2004.
[18]  A. Molinari, G. Straffelini, B. Tesi, and T. Bacci, “Dry sliding wear mechanisms of the Ti6A14V alloy,” Wear, vol. 208, no. 1-2, pp. 105–112, 1997.
[19]  B. Basu, J. Sarkar, and R. Mishra, “Understanding friction and wear mechanisms of high-purity titanium against steel in liquid nitrogen temperature,” Metallurgical and Materials Transactions A, vol. 40, no. 2, pp. 472–480, 2009.
[20]  H. Pinto, A. Pyzalla, R. Büscher, A. Fischer, K. A?mus, and W. Hübner, “The effect of hydrogen on the deterioration of austenitic steels during wear at cryogenic temperature,” Wear, vol. 259, no. 1–6, pp. 424–431, 2005.
[21]  D. A. Rigney, “Comments on the sliding wear of metals,” Tribology International, vol. 30, no. 5, pp. 361–367, 1997.
[22]  S. Liao and J. Duffy, “Adiabatic shear bands in a TI-6A1-4V titanium alloy,” Journal of the Mechanics and Physics of Solids, vol. 46, no. 11, pp. 2201–2231, 1998.
[23]  Timetal datasheet for Ti6Al4V, 2009, http://www.timet.com/pdfs/6-4.pdf.
[24]  Timetal datasheet for Ti-5Al-4V-0.6Mo-0.4Fe, 2009, http://www.timet.com/pdfs/54M.pdf.
[25]  X. H. Cui, Y. S. Mao, M. X. Wei, and S. Q. Wang, “Wear characteristics of Ti-6Al-4V Alloy at 20– C,” Tribology Transactions, vol. 55, no. 2, pp. 185–190, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413