全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production of Platinum Atom Nanoclusters at One End of Helical Plant Viruses

DOI: 10.1155/2013/746796

Full-Text   Cite this paper   Add to My Lib

Abstract:

Platinum atom clusters (Pt nanoparticles, Pt-NPs) were produced selectively at one end of helical plant viruses, tobacco mosaic virus (TMV) and potato virus X (PVX), when platinum coordinate compounds were reduced chemically by borohydrides. Size of the platinum NPs depends on conditions of the electroless deposition of platinum atoms on the virus. Results suggest that the Pt-NPs are bound concurrently to the terminal protein subunits and the 5′ end of encapsidated TMV RNA. Thus, a special structure of tobacco mosaic virus and potato X virus particles with nanoparticles of platinum, which looks like a push-pin with platinum head and virus needle, was obtained. Similar results were obtained with ultrasonically fragmented TMV particles. By contrast, the Pt-NPs fully filled the central axial hole of in vitro assembled RNA-free TMV-like particles. We believe that the results presented here will be valuable in the fundamental understanding of interaction of viral platforms with ionic metals and in a mechanism of nanoparticles formation. 1. Introduction One current goal in nanobiotechnology is to investigate biological nanoplatforms capable of binding metal atoms with the aim of generating new bioinorganic materials for nanoelectronics and medicine. Helical plant viruses, in particular tobacco mosaic virus (TMV) and potato virus X (PVX), have been widely used as templates and scaffolds in nanotechnology [1–12]. TMV particles are rod-like with a diameter of 18?nm and modal length of 300?nm. They consist of 2130 identical 17.5?kDa protein subunits helically arranged around a cylindrical canal and closely packed into a rigid tube. The two-layer cylindrical substructure, each layer consisting of a ring of 17 molecules of coat protein (CP), is known as a “disk,” and 16 1/3 molecules are present in each turn of the assembled helix. RNA is introduced between the CP turns and follows the helix of protein subunits [13, 14]. Apparently, the front stereochemical surface of terminal CP molecules of the helical TMV particle is not equivalent to inner surfaces of other CP subunits. It is known that in the absence of RNA the viral CP may be in vitro assembled into several types of aggregate. In particular, TMV CP can be in vitro assembled into virus-like particles (VLPs) that are structurally similar to native virions [15, 16]. The virions of another helical virus, PVX, are flexuous filaments with modal lengths in the range of 470–580?nm and a diameter of approximately 13?nm [17]. In this work, we found that ions of platinum coordinate compounds reduced by borohydrides

References

[1]  E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Letters, vol. 3, no. 3, pp. 413–417, 2003.
[2]  M. Knez, A. Kadri, C. Wege, U. G?sele, H. Jeske, and K. Nielsch, “Atomic layer deposition on biological macromolecules: metal oxide coating of tobacco mosaic virus and ferritin,” Nano Letters, vol. 6, no. 6, pp. 1172–1177, 2006.
[3]  R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, “Digital memory device based on tobacco mosaic virus conjugated with nanoparticles,” Nature Nanotechnology, vol. 1, no. 1, pp. 72–77, 2006.
[4]  S. Balci, K. Noda, A. M. Bittner et al., “Self-assembly of metal-virus nanodumbbells,” Angewandte Chemie, vol. 46, no. 17, pp. 3149–3151, 2007.
[5]  M. ?. Górzny, A. S. Walton, M. Wn?k, P. G. Stockley, and S. D. Evans, “Four-probe electrical characterization of Pt-coated TMV-based nanostructures,” Nanotechnology, vol. 19, no. 16, Article ID 165704, 2006.
[6]  M. Kobayashi, K. Onodera, Y. Watanabe, and I. Yamashita, “Fabrication of 3-nm platinum wires using a tobacco mosaic virus template,” Chemistry Letters, vol. 39, no. 6, pp. 616–618, 2010.
[7]  X. Chen, K. Gerasopoulos, J. Guo et al., “Virus-enabled silicon anode for lithium-ion batteries,” ACS Nano, vol. 4, no. 9, pp. 5366–5372, 2010.
[8]  A. Mueller, F. J. Eber, C. Azucena et al., “Inducible site-selective bottom-up assembly of virus-derived nanotube arrays on RNA-equipped wafers,” ACS Nano, vol. 5, no. 6, pp. 4512–4520, 2011.
[9]  A. K. Manocchi, S. Seifert, B. Lee, and H. Yi, “In situ small-angle X-ray scattering analysis of palladium nanoparticle growth on tobacco mosaic virus nanotemplates,” Langmuir, vol. 27, no. 11, pp. 7052–7058, 2011.
[10]  J. C. Zhou, C. M. Soto, M. S. Chen et al., “Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires,” Journal of Nanobiotechnology, vol. 10, article 18, 2012.
[11]  C. Azucena, F. J. Eber, V. Trouillet et al., “New approaches for bottom-up assembly of tobacco mosaic virus-derived nucleoprotein tubes on defined patterns on silica- and polymer-based substrates,” Langmuir, vol. 28, no. 42, pp. 14867–14877, 2012.
[12]  C. Hou, Q. Luo, J. Liu et al., “Construction of GPx active centers on natural protein nanodisk/nanotube: a new way to develop artificial nanoenzyme,” ACS Nano, vol. 6, no. 10, pp. 8692–8701, 2012.
[13]  A. Klug, “The tobacco mosaic virus particle: structure and assembly,” Philosophical Transactions of the Royal Society B, vol. 354, no. 1383, pp. 531–535, 1999.
[14]  F. A. Anderer, “Recent studies on the structure of tobacco mosaic virus,” Advances in Protein Chemistry, vol. 18, pp. 1–35, 1964.
[15]  D. L. D. Caspar, “Assembly and stability of the tobacco mosaic virus particle,” Advances in Protein Chemistry, vol. 18, pp. 37–121, 1964.
[16]  P. J. G. Butler, “Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed,” Philosophical Transactions of the Royal Society B, vol. 354, no. 1383, pp. 537–550, 1999.
[17]  J. Atabekov, E. Dobrov, O. Karpova, and N. Rodionova, “Potato virus X: structure, disassembly and reconstitution,” Molecular Plant Pathology, vol. 8, no. 5, pp. 667–675, 2007.
[18]  H. J. Vollenweider, J. M. Sogo, and K. T. Koller Th., “A routine method for protein free spreading of double and single stranded nucleic acid molecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 1, pp. 83–87, 1975.
[19]  O. A. Kondakova and Y. F. Drygin, “Diagnostics of potato spindle tubor viroid disease with dien-Pt DNA probe,” Biotechnologya, vol. 1, pp. 83–90, 1999 (Russian).
[20]  Y. F. Drygin, J. G. Atabekov, O. A. Kondakova, S. N. Chirkov, R. A. Zinovkin, and V. I. Kiseleva, “Method for simultaneously detecting a plurality of RNA sequences in a biological sample,” Patent WO 123494, 2009.
[21]  G. W. Watt and W. A. Cude, “Diethylenetriamine complexes of platinum(II) halides,” Inorganic Chemistry, vol. 7, no. 2, pp. 335–338, 1968.
[22]  N. P. Johnson, J. P. Macquet, J. L. Wiebers, and B. Monsarrat, “Structures of the adducts formed between [Pt(dien)C1]C1 and DNA in vitro,” Nucleic Acids Research, vol. 10, no. 17, pp. 5255–5269, 1982.
[23]  W. Buchner and H. Niederprünt, “Sodium borohydride and amine-boranes, commercially important reducing agents,” Pure & Applied Chemistry, vol. 49, no. 6, pp. 733–743, 1977.
[24]  D. Zimmern, “The 5′ end group of tobacco mosaic virus RNA is m7G5′ ppp5′Gp,” Nucleic Acids Research, vol. 2, no. 7, pp. 1189–1201, 1975.
[25]  N. Sonenberg, A. J. Shatkin, and R. P. Ricciardi, “Analysis of terminal structures of RNA from potato virus X,” Nucleic Acids Research, vol. 5, no. 7, pp. 2501–2512, 1978.
[26]  M. H. V. van Regenmortel, D. Altschuh, and G. Zeder-Lutz, “Tobacco mosaic virus: a model antigen to study virus-antibody interactions,” Biochimie, vol. 75, no. 8, pp. 731–739, 1993.
[27]  M. H. V. van Regenmortel, “The antigenicity of tobacco mosaic virus,” Philosophical Transactions of the Royal Society B, vol. 354, no. 1383, pp. 559–568, 1999.
[28]  A. Buzzell, “Action of urea on tobacco mosaic virus. II. The bonds between protein subunits,” Biophysical Journal, vol. 2, pp. 223–233, 1962.
[29]  L. E. Blowers and T. M. A. Wilson, “The effect of urea on tobacco mosaic virus: polarity of diassembly,” Journal of General Virology, vol. 61, no. 1, pp. 137–141, 1982.
[30]  K. W. Mundry, P. A. C. Watkins, T. Ashfield, K. A. Plaskitt, S. Eisele-Walter, and T. M. A. Wilson, “Complete uncoating of the 5′ leader sequence of tobacco mosaic virus RNA occurs rapidly and is required to initiate cotranslational virus disassembly in vitro,” Journal of General Virology, vol. 72, no. 4, pp. 769–777, 1991.
[31]  H. Fraenkel-Conrat, B. Singer, and A. Tsugita, “Purification of viral RNA by means of bentonite,” Virology, vol. 14, no. 1, pp. 54–58, 1961.
[32]  H. Fraenkel-Conrat, “Degradation of tobacco mosaic virus with acetic acid,” Virology, vol. 4, no. 1, pp. 1–4, 1957.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133