全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Algebra  2013 

Recent Progress on Submersions: A Survey and New Properties

DOI: 10.1155/2013/128064

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is a survey about recent progress on submersive morphisms of schemes combined with new results that we prove. They concern the class of quasicompact universally subtrusive morphisms that we introduced about 30 years ago. They are revisited in a recent paper by Rydh, with substantial complements and key results. We use them to show Artin-Tate-like results about the 14th problem of Hilbert, for a base scheme either Noetherian or the spectrum of a valuation domain. We look at faithfully flat morphisms and get “almost” Artin-Tate-like results by considering the Goldman (finite type) points of a scheme. Bjorn Poonen recently proved that universally closed morphisms are quasicompact. By introducing incomparable morphisms of schemes, we are able to characterize universally closed surjective morphisms that are either integral or finite. Next we consider pure morphisms of schemes introduced by Mesablishvili. In the quasicompact case, they are universally schematically dominant morphisms. This leads us to a characterization of universally subtrusive morphisms by purity. Some results on the schematically dominant property are given. The paper ends with properties of monomorphisms and topological immersions, a dual notion of submersions. 1. Introduction Our aim is to give a survey on recent progress on submersions and new results that commutative algebraists may find useful. We also recall results that are needed. The paper is written in the language of schemes because it is sometimes necessary to enlarge the category of commutative rings to get proofs, but the results can be easily translated. Submersive morphisms of schemes (or submersions) are surjective morphisms inducing the quotient topology on ; that is, is an open (closed) subset if and only if is open (closed). They are also called topological epimorphisms by some authors like Voevodsky who defines and uses the and -(Grothendieck) topologies [1]. They appear naturally in many situations such as when studying quotients, homology, descent, and the fundamental group of schemes. A morphism of schemes is called universally submersive if is submersive for each morphism . The first proper treatment of submersive morphisms was settled by Grothendieck, with applications to the fundamental group of a scheme. We singled out a subclass of submersive morphisms in [2] and dubbed them subtrusive morphisms (or subtrusions). Submersive morphisms used in practice are subtrusive. Our study was established in the affine schemes context. But as Rydh showed, the theory can be extended to the arbitrary schemes context

References

[1]  V. Voevodsky, “Homology of schemes,” Selecta Mathematica, vol. 2, no. 1, pp. 111–153, 1996.
[2]  G. Picavet, “Submersion et descente,” Journal of Algebra, vol. 103, no. 2, pp. 527–591, 1986.
[3]  D. Rydh, “Submersions and effective descent of étale morphisms,” Bulletin de la Société Mathématique de France, vol. 138, no. 2, pp. 181–230, 2010.
[4]  A. Grothendieck, Eléments de géométrie algébrique. I. Le langage des schémas, vol. 166 of Die Grundlehren der Mathematischen Wissenschaften, Springer, 2nd edition, 1971.
[5]  J. Kollár, “Quotient spaces modulo algebraic groups,” Annals of Mathematics, vol. 145, no. 1, pp. 33–79, 1997.
[6]  W. Heinzer and J. Ohm, “Locally Noetherian commutative rings,” Transactions of the American Mathematical Society, vol. 158, pp. 273–284, 1971.
[7]  D. E. Dobbs, M. Fontana, and G. Picavet, “Generalized going-down homomorphisms of commutative rings,” in Commutative Ring Theory and Applications (Fez, 2001), vol. 231 of Lecture Notes in Pure and Applied Mathematics, pp. 143–163, Dekker, New York, NY, USA, 2003.
[8]  M. Nagata, “A theorem on finite generation of a ring,” Nagoya Mathematical Journal, vol. 27, pp. 193–205, 1966.
[9]  M. Nagata and K. Otsuka, “Some remarks on the 14th problem of Hilbert,” Journal of Mathematics of Kyoto University, vol. 5, no. 1, pp. 61–66, 1965.
[10]  A. Constantinescu, “Schemes dominated by algebraic varieties and some classes of scheme morphisms. I,” Acta Universitatis Apulensis, no. 16, pp. 37–51, 2008.
[11]  J. P. Olivier, “Descente de quelques propriétés élémentaires par morphismes purs,” Anais da Academia Brasileira de Ciências, vol. 45, pp. 17–33, 1973.
[12]  http://mathoverflow.net/questions/23337/is-a-universally-closed-morphism-of-schemes-quasi-compact.
[13]  Chapter: Morphisms of schemes, http://stacks.math.columbia.edu.
[14]  A. Grothendieck, “éléments de géométrie algébrique. IV. étude locale des schémas et des morphismes de schémas. I,” Publications Mathématiques de l'Institut des Hautes études Scientifiques, no. 20, 1964.
[15]  A. Grothendieck, “éléments de géométrie algébrique. IV. étude locale des schémas et des morphismes de schémas. II,” Publications Mathématiques de l'Institut des Hautes études Scientifiques, no. 24, 1965.
[16]  A. Grothendieck, “éléments de géométrie algébrique. IV. étude locale des schémas et des morphismes de schémas. III,” Publications Mathématiques de l'Institut des Hautes études Scientifiques, no. 28, 1966.
[17]  A. Grothendieck, “éléments de géométrie algébrique. IV. étude locale des schémas et des morphismes de schémas IV,” Publications Mathématiques de l'Institut des Hautes études Scientifiques, no. 32, 1967.
[18]  M. Raynaud, “Un critère d'effectivité de descente,” in Séminaire d'Algèbre Commutative 1967-1968, Secrétariat Mathématique, exposé no 5, 1968.
[19]  D. Ferrand, “Monomorphismes et morphismes absolument plats,” Bulletin de la Société Mathématique de France, vol. 100, pp. 97–128, 1972.
[20]  M. Raynaud and L. Gruson, “Critères de platitude et de projectivité,” Inventiones Mathematicae, vol. 13, pp. 1–89, 1971.
[21]  J. P. Olivier, “Anneaux absolument plats universels et épimorphismes à buts réduits,” in Séminaire d'Algèbre commutative 1967-1968, Secrétariat Mathématique, exposé no 6, 1968.
[22]  M. Hochster, “Prime ideal structure in commutative rings,” Transactions of the American Mathematical Society, vol. 142, pp. 43–60, 1969.
[23]  D. Ferrand, “Conducteur, descente et pincement,” Bulletin de la Société Mathématique de France, vol. 131, no. 4, pp. 553–585, 2003.
[24]  G. Picavet, “Seminormal or -closed schemes and Rees rings,” Algebras and Representation Theory, vol. 1, no. 3, pp. 255–309, 1998.
[25]  N. Onoda, “Subrings of finitely generated rings over a pseudogeometric ring,” Japanese Journal of Mathematics, vol. 10, no. 1, pp. 29–53, 1984.
[26]  J. M. Giral, “Krull dimension, transcendence degree and subalgebras of finitely generated algebras,” Archiv der Mathematik, vol. 36, no. 4, pp. 305–312, 1981.
[27]  J. Fogarty, “Geometric quotients are algebraic schemes,” Advances in Mathematics, vol. 48, no. 2, pp. 166–171, 1983.
[28]  J. Alper, “Fogarthy's proof of the finite generation of certain subrings,” Expository paper, http://maths-people.anu.edu.au/~alperj/.
[29]  M. Hashimoto, “‘Geometric quotients are algebraic schemes’ based on Fogarty's idea,” Journal of Mathematics of Kyoto University, vol. 43, no. 4, pp. 807–814, 2003.
[30]  M. Lorenz, “On affine algebras,” in Ring Theory, vol. 1197 of Lecture Notes in Mathematics, pp. 121–126, Springer, Berlin, Germany, 1986.
[31]  D. Gale, “Subalgebras of an algebra with a single generator are finitely generated,” Proceedings of the American Mathematical Society, vol. 8, pp. 929–930, 1957.
[32]  I. J. Papick, “Affine pairs,” in Rings, Modules, Algebras, and Abelian Groups, vol. 236 of Lecture Notes in Pure and Applied Mathematics, pp. 437–448, Dekker, New York, NY, USA, 2004.
[33]  Chapter: More on morphisms, http://stacks.math.columbia.edu.
[34]  Q. Liu, Algebraic Geometry and Arithmetic Curves, vol. 6 of Oxford Graduate Texts in Mathematics, Oxford Science Publications, Oxford University Press, Oxford, UK, 2002.
[35]  A. Grothendieck, “éléments de géométrie algébrique. II. étude globale élémentaire de quelques classes de morphismes,” Publications Mathématiques de l'Institut des Hautes études Scientifiques, no. 8, 1961.
[36]  D. Rydh, “Noetherian approximation of algebraic spaces and stacks,” http://arxiv.org/abs/0904.0227v2.
[37]  Chapter: Properties of schemes, http://stacks.math.columbia.edu.
[38]  J. P. Olivier, “Montée des propriétés par morphismes absolument plats,” in Comptes-Rendus des Journées d'Algèbre Pure et Appliquée. Montpellier, pp. 86–109, Université des Sciences et Techniques du Languedoc, Montpellier, France, 1971.
[39]  U. G?rtz and T. Wedhorn, Algebraic Geometry I: Schemes with Examples and Exercises, Advanced Lectures in Mathematics, Vieweg and Teubner, Wiesbaden, Germany, 2010.
[40]  M. Hashimoto, “A pure subalgebra of a finitely generated algebra is finitely generated,” Proceedings of the American Mathematical Society, vol. 133, no. 8, pp. 2233–2235, 2005.
[41]  B. Mesablishvili, “Descent theory for schemes,” Applied Categorical Structures, vol. 12, no. 5-6, pp. 485–512, 2004.
[42]  B. Mesablishvili, “More on descent theory for schemes,” Georgian Mathematical Journal, vol. 11, no. 4, pp. 783–800, 2004.
[43]  G. Picavet, “Algebraically flat or projective algebras,” Journal of Pure and Applied Algebra, vol. 174, no. 2, pp. 163–185, 2002.
[44]  G. Picavet, “Pureté, rigidité et morphismes entiers,” Transactions of the American Mathematical Society, vol. 323, no. 1, pp. 283–313, 1991.
[45]  D. Lazard, “Autour de la platitude,” Bulletin de la Société Mathématique de France, vol. 97, pp. 81–128, 1969.
[46]  B. Conrad, M. Lieblich, and M. Olson, “Nagata compactication for algebraic spaces,” Journal de l'Institut de Mathématiques de Jussieu, vol. 11, pp. 747–814, 2012.
[47]  K. Schwede, “Gluing schemes and a scheme without closed points,” in Recent Progress in Arithmetic and Algebraic Geometry, vol. 386 of Contemporary Mathematics, pp. 157–172, American Mathematical Society, Providence, RI, USA, 2005.
[48]  J. P. Olivier, Morphismes Immergeants de Ann. U.E.R. de Mathématiques, 1970-1971, Secrétariat des Mathématiques, Publication No 106, Université des Sciences et Techniques du Languedoc, Montpellier, France, 1971.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413