全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Association of Postcardiac Surgery Acute Kidney Injury with Intraoperative Systolic Blood Pressure Hypotension

DOI: 10.1155/2013/174091

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Postoperative acute kidney injury (AKI) is associated with high mortality and substantial cost after aortocoronary bypass graft (CABG) surgery. We tested the hypothesis that intraoperative systolic blood pressure variation is associated with postoperative AKI. Methods. We gathered demographic, procedural, blood pressure, and renal outcome data for 7,247 CABG surgeries at a single institution between 1996 and 2005. A development/validation cohort methodology was randomly divided (66% and 33%, resp.). Peak postoperative serum creatinine rise relative to baseline (%ΔCr) was the primary AKI outcome variable. Markers reflective of intraoperative systolic blood pressure variation were derived for each patient including (1) peak and nadir values (absolute and relative to baseline) and (2) excursion episodes beyond selected thresholds (by duration, frequency, and duration × degree). Each marker of systolic blood pressure variation was then separately evaluated for association with AKI using linear regression models with adjustment for several known risk factors (age, aprotinin use, congestive heart failure, previous myocardial infarction, baseline creatinine, bypass time, diabetes, weight, concomitant valve surgery, gender, and preoperative pulse pressure). Results. An association was identified between systolic blood pressure relative to baseline and postoperative AKI ( ). Conclusions. In CABG surgery patients, intraoperative systolic blood pressure decrease relative to baseline systolic blood pressure is independently associated with postoperative AKI. 1. Introduction It is commonly purported that poor perioperative hemodynamic control during cardiac surgery leads to postoperative acute kidney injury (AKI) [1–9]. Systolic blood pressure and pulse pressure amplification are due to changes in arterial stiffness that affect wave propagation along the arterial tree. Both systolic blood pressure and pulse pressure are higher in the periphery than in the central arteries for the same mean arterial pressure (MAP) and diastolic blood pressure. Whereas MAP refers exclusively to steady pressure, vascular resistance, and small arteries, systolic blood pressure and pulse pressure refer to pulsatile pressure and are determined by stroke volume, arterial stiffness, and wave reflection. Whereas a large rise in serum creatinine (≥100%) over baseline has been shown to portend a doubling of in-hospital mortality, it has also been shown that even the small relative increases in creatinine, used as a sensitive index of AKI after aortocoronary bypass graft (CABG)

References

[1]  I. Bahar, A. Akgul, M. A. Ozatik et al., “Acute renal failure following open heart surgery: risk factors and prognosis,” Perfusion, vol. 20, no. 6, pp. 317–322, 2005.
[2]  N. Brienza, M. T. Giglio, M. Marucci, and T. Fiore, “Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study,” Critical Care Medicine, vol. 37, no. 6, pp. 2079–2090, 2009.
[3]  S. Aronson, M. L. Fontes, Y. Miao, and D. T. Mangano, “Risk index for perioperative renal dysfunction/failure: critical dependence on pulse pressure hypertension,” Circulation, vol. 115, no. 6, pp. 733–742, 2007.
[4]  S. Aronson, D. Boisvert, and W. Lapp, “Isolated systolic hypertension is associated with adverse outcomes from coronary artery bypass grafting surgery,” Anesthesia and Analgesia, vol. 94, no. 5, pp. 1079–1084, 2002.
[5]  A. T. Cheung, “Exploring an optimum intra/postoperative management strategy for acute hypertension in the cardiac surgery patient,” Journal of Cardiac Surgery, vol. 21, no. 1, supplement, pp. S8–S14, 2006.
[6]  D. P. B. Janssen, L. Noyez, J. A. M. Van Druten, S. H. Skotnicki, and L. K. Lacquet, “Predictors of nephrological morbidity after coronary artery bypass surgery,” Cardiovascular Surgery, vol. 10, no. 3, pp. 222–227, 2002.
[7]  D. L. Reich, E. Bennett-Guerrero, C. A. Bodian, S. Hossain, W. Winfree, and M. Krol, “Intraoperative tachycardia and hypertension are independently associated with adverse outcome in noncardiac surgery of long duration,” Anesthesia and Analgesia, vol. 95, no. 2, pp. 273–277, 2002.
[8]  M. L. Fontes, S. Aronson, J. P. Mathew et al., “Pulse pressure and risk of adverse outcome in coronary bypass surgery,” Anesthesia and Analgesia, vol. 107, no. 4, pp. 1122–1129, 2008.
[9]  K. Doddakula, N. Al-Sarraf, K. Gately et al., “Predictors of acute renal failure requiring renal replacement therapy post cardiac surgery in patients with preoperatively normal renal function,” Interactive Cardiovascular and Thoracic Surgery, vol. 6, no. 3, pp. 314–318, 2007.
[10]  R. Zakeri, N. Freemantle, V. Barnett et al., “Relation between mild renal dysfunction and outcomes after coronary artery bypass grafting,” Circulation, vol. 112, no. 9, pp. 270–275, 2005.
[11]  A. Lassnigg, E. R. Schmid, M. Hiesmayr et al., “Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery: do we have to revise current definitions of acute renal failure?” Critical Care Medicine, vol. 36, no. 4, pp. 1129–1137, 2008.
[12]  A. Lassnigg, D. Schmidlin, M. Mouhieddine et al., “Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study,” Journal of the American Society of Nephrology, vol. 15, no. 6, pp. 1597–1605, 2004.
[13]  M. Stafford-Smith, U. D. Patel, B. G. Phillips-Bute, A. D. Shaw, and M. Swaminathan, “Acute kidney injury and chronic kidney disease after cardiacsurgery,” Advances in Chronic Kidney Disease, vol. 15, no. 3, pp. 257–277, 2008.
[14]  B. G. Loef, A. H. Epema, T. D. Smilde et al., “Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and long-term survival,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 195–200, 2005.
[15]  E. A. J. Hoste and M. Schurgers, “Epidemiology of acute kidney injury: how big is the problem?” Critical Care Medicine, vol. 36, no. 4, supplement, pp. S146–S151, 2008.
[16]  R. L. Mehta, J. A. Kellum, S. V. Shah et al., “Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury,” Critical Care, vol. 11, no. 2, article R31, 2007.
[17]  R. Bellomo, C. Ronco, J. A. Kellum, et al., “Acute renal failure—definitions, outcomes, measures, animal models, fluid therapy and information technology needs,” in Proceedings of the 2nd International Concensus Conference of the Acute Dialysis Quality Initiative Group, 2004.
[18]  P. Dennen, I. S. Douglas, and R. Anderson, “Acute kidney injury in the intensive care unit: an update and primer for the intensivist,” Critical Care Medicine, vol. 38, no. 1, pp. 261–275, 2010.
[19]  M. Haase, A. Haase-Fielitz, R. Bellomo et al., “Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial,” Critical Care Medicine, vol. 37, no. 1, pp. 39–47, 2009.
[20]  A. D. Shaw, M. Stafford-Smith, W. D. White et al., “The effect of aprotinin on outcome after coronary-artery bypass grafting,” New England Journal of Medicine, vol. 358, no. 8, pp. 784–793, 2008.
[21]  D. T. Mangano, I. C. Tudor, and C. Dietzel, “The risk associated with aprotinin in cardiac surgery,” New England Journal of Medicine, vol. 354, no. 4, pp. 353–365, 2006.
[22]  J. R. Brown, R. P. Cochran, B. J. Leavitt et al., “Multivariable prediction of renal insufficiency developing after cardiac surgery,” Circulation, vol. 116, supplement 1, no. 11, pp. 139–143, 2007.
[23]  S. Salis, V. V. Mazzanti, G. Merli et al., “Cardiopulmonary bypass duration is an independent predictor of morbidity and mortality after cardiac surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 22, no. 6, pp. 814–822, 2008.
[24]  P. Verdecchia and F. Angeli, “Natural history of hypertension subtypes,” Circulation, vol. 111, no. 9, pp. 1094–1096, 2005.
[25]  R. F. Gottesman, A. E. Hillis, M. A. Grega et al., “Early postoperative cognitive dysfunction and blood pressure during coronary artery bypass graft operation,” Archives of Neurology, vol. 64, no. 8, pp. 1111–1114, 2007.
[26]  A. V. Chobanian, G. L. Bakris, H. R. Black et al., “Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003.
[27]  S. J. Howell, J. W. Sear, and P. Fo?x, “Hypertension, hypertensive heart disease and perioperative cardiac risk,” British Journal of Anaesthesia, vol. 92, no. 4, pp. 570–583, 2004.
[28]  A. Benjo, R. E. Thompson, D. Fine et al., “Pulse pressure is an age-independent predictor of stroke development after cardiac surgery,” Hypertension, vol. 50, no. 4, pp. 630–635, 2007.
[29]  M. Gaudino, N. Luciani, S. Giungi et al., “Different profiles of patients who require dialysis after cardiac surgery,” Annals of Thoracic Surgery, vol. 79, no. 3, pp. 825–829, 2005.
[30]  M. Swaminathan, A. D. Shaw, B. G. Phillips-Bute et al., “Trends in acute renal failure associated with coronary artery bypass graft surgery in the United States,” Critical Care Medicine, vol. 35, no. 10, pp. 2286–2291, 2007.
[31]  M. H. Rosner and M. D. Okusa, “Acute kidney injury associated with cardiac surgery,” Clinical journal of the American Society of Nephrology, vol. 1, no. 1, pp. 19–32, 2006.
[32]  C. V. Thakar, A. Christianson, R. Freyberg, P. Almenoff, and M. L. Render, “Incidence and outcomes of acute kidney injury in intensive care units: a veterans administration study,” Critical Care Medicine, vol. 37, no. 9, pp. 2552–2558, 2009.
[33]  G. Lippi and G. C. Guidi, “Acute kidney injury: time to shift from creatinine to the estimated glomerular filtration rate?” Critical Care, vol. 36, no. 5, pp. 1397–1403, 2008.
[34]  Society of Thoracic Surgeons, criteria, http://www.sts.org/.
[35]  M. Swaminathan, B. G. Phillips-Bute, P. J. Conlon, P. K. Smith, M. F. Newman, and M. Stafford-Smith, “The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery,” Annals of Thoracic Surgery, vol. 76, no. 3, pp. 784–791, 2003.
[36]  S. Aronson, C. M. Dyke, J. H. Levy et al., “Does perioperative systolic blood pressure variability predict mortality after cardiac surgery? An exploratory analysis of the ECLIPSE trials,” Anesthesia and Analgesia, vol. 113, no. 1, pp. 19–30, 2011.
[37]  S. Aronson, M. Stafford-Smith, B. Phillips-Bute, A. Shaw, J. Gaca, and M. Newman, “Intraoperative systolic blood pressure variability predicts 30-day mortality in aortocoronary bypass surgery patients,” Anesthesiology, vol. 113, no. 2, pp. 305–312, 2010.
[38]  V. Aboyans, M. Frank, K. Nubret, P. Lacroix, and M. Laskar, “Heart rate and pulse pressure at rest are major prognostic markers of early postoperative complications after coronary bypass surgery,” European Journal of Cardiothoracic Surgery, vol. 33, no. 6, pp. 971–976, 2008.
[39]  N. M. Nikolov, M. L. Fontes, W. D. White et al., “Pulse pressure and long term outcome,” Anesthesia and Analgesia, vol. 110, no. 2, pp. 335–340, 2010.
[40]  A. C. Cernaianu, T. V. Vassilidze, D. R. Flum et al., “Predictors of stroke after cardiac surgery,” Journal of Cardiac Surgery, vol. 10, no. 4, pp. 334–339, 1995.
[41]  A. M. Dart and B. A. Kingwell, “Pulse pressure—a review of mechanisms and clinical relevance,” Journal of the American College of Cardiology, vol. 37, no. 4, pp. 975–984, 2001.
[42]  M. E. Safar, B. I. Levy, and H. Struijker-Boudier, “Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases,” Circulation, vol. 107, no. 22, pp. 2864–2869, 2003.
[43]  K. Imoto, T. Hiro, T. Fujii et al., “Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging,” Journal of the American College of Cardiology, vol. 46, no. 8, pp. 1507–1515, 2005.
[44]  K. W. Lee, A. D. Blann, and G. Y. H. Lip, “High pulse pressure and nondipping circadian blood pressure in patients with coronary artery disease: relationship to thrombogenesis and endothelial damage/dysfunction,” American Journal of Hypertension, vol. 18, no. 1, pp. 104–115, 2005.
[45]  Y. S. Chatzizisis, A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone, “Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior,” Journal of the American College of Cardiology, vol. 49, no. 25, pp. 2379–2393, 2007.
[46]  Z.-Y. Li and J. H. Gillard, “Plaque rupture: plaque stress, shear stress, and pressure drop,” Journal of the American College of Cardiology, vol. 52, no. 6, pp. 499–500, 2008.
[47]  M. F. O'Rourke and M. E. Safar, “Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy,” Hypertension, vol. 46, no. 1, pp. 200–204, 2005.
[48]  J. B. Almeida, M. A. Saragoca, A. Tavares, M. L. Cezareti, S. A. Draibe, and O. L. Ramos, “Severe hypertension induces disturbances of renal autoregulation,” Hypertension, vol. 19, no. 2, supplement, pp. 279–283, 1992.
[49]  W. A. Cupples and B. Braam, “Assessment of renal autoregulation,” American Journal of Physiology: Renal Physiology, vol. 292, no. 4, pp. F1105–F1123, 2007.
[50]  R. V. Immink, B.-J. H. van den Born, G. A. van Montfrans, R. P. Koopmans, J. M. Karemaker, and J. J. Van Lieshout, “Impaired cerebral autoregulation in patients with malignant hypertension,” Circulation, vol. 110, no. 15, pp. 2241–2245, 2004.
[51]  T. Tomiyamaa, H. Tanakab, H. Hashimotoc, et al., “Arterial stiffness and declines in individuals with normal renal function/early chronic kidney disease,” Atherosclerosis, vol. 212, pp. 345–350, 2010.
[52]  U. M. Fischer, W. K. Weissenberger, R. D. Warters, H. J. Geissler, S. J. Allen, and U. Mehlhorn, “Impact of cardiopulmonary bypass management on postcardiac surgery renal function,” Perfusion, vol. 17, no. 6, pp. 401–406, 2002.
[53]  J. P. Gold, M. E. Charlson, P. Williams-Russo et al., “Improvement of outcomes after coronary artery bypass: a randomized trial comparing intraoperative high versus low mean arterial pressure,” Journal of Thoracic and Cardiovascular Surgery, vol. 110, no. 5, pp. 1302–1314, 1995.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413