全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bicarbonates for the Prevention of Postoperative Renal Failure in Endovascular Aortic Aneurysm Repair: A Randomized Pilot Trial

DOI: 10.1155/2013/467326

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. Contrast-induced nephropathy (CIN) can contribute to acute kidney injury (AKI) in patients undergoing endovascular aortic aneurysm surgery. We evaluated the incidence of AKI together with the evolution of early biomarkers of renal injury in patients receiving bicarbonates or NaCl 0.9%. Methods. This study involved endovascular aortic aneurysm surgery patients. Group A ( ) received bicarbonates 3?mL/kg/h for 1?h before the procedure and then 1?mL/kg/h until 6?h after surgery, whereas group B ( ) received NaCl 0.9% using the same protocol. Biomarkers of renal injury from urine (interleukin-18 (IL-18), neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl- -D-glucosaminidase (NAG), and kidney injury molecule 1 (KIM-1)) and blood (NGAL, cystatin C) were measured at baseline and 3, 24, and 48?h postoperatively. Results. AKI occurred in 1 patient (2.9%), in the bicarbonates group. IL-18, NAG, NGAL, and KIM-1 significantly rose in both groups after the surgery. There was a greater rise in NGAL and IL-18 after 3?h in the bicarbonates versus NaCl 0.9% group: 1115% versus 240% increase ( ) and 338% increase versus 1.4% decrease ( ). Conclusions. Despite significant elevation in biomarkers of renal injury, we demonstrated a low rate of AKI following endovascular aortic surgery. 1. Introduction The endovascular approach for the repair of aortic aneurysm is an interesting alternative to the open repair approach because of its associated reduced 30-day morbidity and mortality. This approach, however, carries its own risks such as renal complications [1–5]. Renal complications occur with variable incidence, ranging from 5.5 to 20% [3–6]. They may be caused by ischemic or embolic events but can also be secondary to the large amounts of contrast media used to guide prosthesis placement. This complication is known as contrast-induced nephropathy (CIN). Indeed, the volume of contrast media used in vascular surgery is important, ranging from 130 to 260?mL [1, 3, 4, 6, 7]. Many strategies have been developed in an attempt to prevent CIN. Among these, an intravenous volume expansion that covers the pre-, per- and postcontrast media exposure is the only established way [8–13]. N-acetylcysteine (NAC) administration has been suggested because of its low cost, safety, and possible benefit in patients with chronic renal failure [14–19], although its efficacy is controversial [14]. What type of infusion to use to achieve intravenous volume expansion is not known [14–29]. By its ability to alkalinize renal tubular fluid and reduce the formation of free radicals,

References

[1]  The EVAR trial participants, “Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurym (EVAR trial 1): randomised controlled trial,” The Lancet, vol. 365, no. 9478, pp. 2179–2186, 2005.
[2]  The EVAR trial participants, “Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial,” The Lancet, vol. 365, no. 9478, pp. 2187–2192, 2005.
[3]  M. L. Schermerhorn, A. J. O'Malley, A. Jhaveri, P. Cotterill, F. Pomposelli, and B. E. Landon, “Endovascular vs. open repair of abdominal aortic aneurysms in the medicare population,” The New England Journal of Medicine, vol. 358, no. 5, pp. 464–474, 2008.
[4]  S. S. Parmer and J. P. Carpenter, “Endovascular aneurysm repair with suprarenal vs infrarenal fixation: a study of renal effects,” Journal of Vascular Surgery, vol. 43, no. 1, pp. 19–25, 2006.
[5]  J. P. Carpenter, R. M. Fairman, C. F. Barker et al., “Endovascular AAA repair in patients with renal insufficiency: strategies for reducing adverse renal events,” Cardiovascular Surgery, vol. 9, no. 6, pp. 559–564, 2001.
[6]  J. Alsac, C. K. Zarins, M. A. Heikkinen et al., “The impact of aortic endografts on renal function,” Journal of Vascular Surgery, vol. 41, no. 6, pp. 926–930, 2005.
[7]  N. N. Moore, M. Lapsley, A. G. Norden et al., “Does N-acetylcysteine prevent contrast-induced nephropathy during endovascular AAA repair? A randomized controlled pilot study,” Journal of Endovascular Therapy, vol. 13, no. 5, pp. 660–666, 2006.
[8]  C. M. Erley, “Does hydration prevent radiocontrast-induced acute renal failure?” Nephrology Dialysis Transplantation, vol. 14, no. 5, pp. 1064–1066, 1999.
[9]  C. Mueller, G. Buerkle, H. J. Buettner et al., “Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty,” Archives of Internal Medicine, vol. 162, no. 3, pp. 329–336, 2002.
[10]  H. S. Trivedi, H. Moore, S. Nasr et al., “A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity,” Nephron Clinical Practice, vol. 93, no. 1, pp. C29–34, 2003.
[11]  B. D. Bader, E. D. Berger, M. B. Heede et al., “What is the best hydration regimen to prevent contrast media-induced nephrotoxicity?” Clinical Nephrology, vol. 62, no. 1, pp. 1–7, 2004.
[12]  S. Holt, “Radiocontrast media-induced renal injury: saline is effective in prevention,” Nephron Clinical Practice, vol. 93, no. 1, pp. 5–6, 2003.
[13]  C. Mueller, “Prevention of contrast-induced nephropathy with volume supplementation,” Kidney International, no. 100, pp. S16–19, 2006.
[14]  D. A. Gonzales, K. J. Norsworthy, S. J. Kern et al., “A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity,” BMC Medicine, vol. 5, article 32, 2007.
[15]  H. Trivedi, S. Daram, A. Szabo, A. L. Bartorelli, and G. Marenzi, “High-dose N-acetylcysteine for the Prevention of Contrast-induced Nephropathy,” The American Journal of Medicine, vol. 122, no. 9, pp. 874–915, 2009.
[16]  C. Briguori, A. Colombo, A. Violante et al., “Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity,” European Heart Journal, vol. 25, no. 3, pp. 206–211, 2004.
[17]  C. S. R. Baker, A. Wragg, S. Kumar, R. De Palma, L. R. I. Baker, and C. J. Knight, “A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study,” Journal of the American College of Cardiology, vol. 41, no. 12, pp. 2114–2118, 2003.
[18]  A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Annals of Internal Medicine, vol. 148, no. 4, pp. 284–294, 2008.
[19]  S. D. Weisbord and P. M. Palevsky, “Strategies for the prevention of contrast-induced acute kidney injury,” Current Opinion in Nephrology and Hypertension, vol. 19, no. 6, pp. 539–549, 2010.
[20]  G. J. Merten, W. P. Burgess, L. V. Gray et al., “Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial,” Journal of the American Medical Association, vol. 291, no. 19, pp. 2328–2334, 2004.
[21]  C. Briguori, F. Airoldi, D. D'Andrea et al., “Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies,” Circulation, vol. 115, pp. 1211–1217, 2007.
[22]  H. Ueda, T. Yamada, M. Masuda et al., “Prevention of contrast-induced nephropathy by bolus injection of sodium bicarbonate in patients with chronic kidney disease undergoing emergent coronary procedures,” The American Journal of Cardiology, vol. 107, no. 8, pp. 1163–1167, 2011.
[23]  M. Motohiro, H. Kamihata, S. Tsujimoto et al., “A new protocol using sodium bicarbonate for the prevention of contrast-induced nephropathy in patients undergoing coronary angiography,” The American Journal of Cardiology, vol. 107, no. 11, pp. 1604–1608, 2011.
[24]  M. Pakfetrat, M. H. Nikoo, L. Malekmakan et al., “A comparison of sodium bicarbonate infusion versus normal saline infusion and its combination with oral acetazolamide for prevention of contrast-induced nephropathy: a randomized, double-blind trial,” International Urology and Nephrology, vol. 41, no. 3, pp. 629–634, 2009.
[25]  S. S. Brar, A. Y. Shen, M. B. Jorgensen et al., “Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1038–1046, 2008.
[26]  E. Adolph, B. Holdt-Lehmann, T. Chatterjee et al., “Renal insufficiency following radiocontrast exposure trial (REINFORCE): a randomized comparison of sodium bicarbonate versus sodium chloride hydration for the prevention of contrast-induced nephropathy,” Coronary Artery Disease, vol. 19, no. 6, pp. 413–419, 2008.
[27]  A. Vasheghani-Farahani, G. Sadigh, S. E. Kassaian et al., “Sodium bicarbonate plus isotonic saline versus saline for prevention of contrast-induced nephropathy in patients undergoing coronary angiography: a randomized controlled trial,” The American Journal of Kidney Diseases, vol. 54, no. 4, pp. 610–618, 2009.
[28]  S. Zoungas, T. Ninomiya, R. Huxley et al., “Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy,” Annals of Internal Medicine, vol. 151, no. 9, pp. 631–638, 2009.
[29]  V. Kunadian, A. Zaman, I. Spyridopoulos, and W. Qiu, “Sodium bicarbonate for the prevention of contrast induced nephropathy: a meta-analysis of published clinical trials,” European Journal of Radiology, vol. 79, no. 1, pp. 48–55, 2011.
[30]  S. S. Soni, C. Ronco, N. Katz, and D. N. Cruz, “Early diagnosis of acute kidney injury: the promise of novel biomarkers,” Blood Purification, vol. 28, no. 3, pp. 165–174, 2009.
[31]  J. Mishra, M. A. Qing, A. Prada et al., “Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2534–2543, 2003.
[32]  R. Hirsch, C. Dent, H. Pfriem et al., “NGAL is an early predictive biomarker of contrast-induced nephropathy in children,” Pediatric Nephrology, vol. 22, no. 12, pp. 2089–2095, 2007.
[33]  W. Ling, N. Zhaohui, H. Ben et al., “Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography,” Nephron Clinical Practice, vol. 108, no. 3, pp. c176–c181, 2008.
[34]  D. N. Cruz, C. Y. Goh, A. Haase-Fielitz, C. Ronco, and M. Haase, “Early biomarkers of renal injury,” Congestive Heart Failure, vol. 16, no. 1, pp. S25–S31, 2010.
[35]  J. Malyszko, H. Bachorzewska-Gajewska, B. Poniatowski, J. S. Malyszko, and S. Dobrzycki, “Urinary and serum biomarkers after cardiac catheterization in diabetic patients with stable angina and without severe chronic kidney disease,” Renal Failure, vol. 31, no. 10, pp. 910–919, 2009.
[36]  K. Sethi and L. H. Diamond, “Aminoglycoside nephrotoxicity and its predictability,” Nephron, vol. 27, no. 4-5, pp. 265–270, 1981.
[37]  G. Roche, B. Brugerolle, J. Straczek, et al., “Value of the assay of 4 urinary enzyme activities in the diagnosis of the infectious or toxic (aminoglycosides) origin of a renal disease,” La Revue De MéDecine Interne, vol. 4, pp. 327–334, 1983.
[38]  H. G. Hartmann, H. E. Braedel, and G. A. Jutzler, “Detection of renal tubular lesions after abdominal aortography and selective renal arteriography by quantitative measurements of brush-border enzymes in the urine,” Nephron, vol. 39, no. 2, pp. 95–101, 1985.
[39]  J. Wethuyzen, et al., “Urinary protein excretion following coronary angiography using a non-toxic radiocontrast agent,” Annals of Clinical Biochemistry, vol. 33, pp. 349–351, 1996.
[40]  R. L. Mehta, J. A. Kellum, S. V. Shah et al., “Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury,” Critical Care, vol. 11, no. 2, article R31, 2007.
[41]  R. Mehran, E. D. Aymong, E. Nikolsky et al., “A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation,” Journal of the American College of Cardiology, vol. 44, no. 7, pp. 1393–1399, 2004.
[42]  P. Meier, D. T. Ko, A. Tamura, U. Tamhane, and H. S. Gurm, “Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis,” BMC Medicine, vol. 7, article 23, 2009.
[43]  M. Maioli, A. Toso, M. Leoncini et al., “Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing Coronary angiography or intervention,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 599–604, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413