全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nickel in Soil Modifies Sensitivity to Diazinon Measured by the Activity of Acetylcholinesterase, Catalase, and Glutathione S-Transferase in Earthworm Eisenia fetida

DOI: 10.1155/2013/642098

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nickel in typical soils is present in a very low concentration, but in the contaminated soils it occurs in locally elevated concentrations. The aim of this study was to examine the effect of nickel in the concentrations of 300 (very high, close to LOEC for reproduction) and 900 (extremely high, close to LOEC for mortality) mg/kg dry soil on the life history and acetylcholinesterase, catalase, and glutathione S-transferase activities in earthworm Eisenia fetida and to establish how nickel modifies the sensitivity to organophosphorous pesticide—diazinon. Cocoons production and juveniles’ number were significantly lower only in groups exposed to Ni in the concentration of 900?mg/kg dry soil for two months. Diazinon administration diminished the AChE activity in the GI tract and in the body wall. The interaction between diazinon and nickel was observed, and, in consequence, the AChE activity after the pesticide treatment was similar to controls in worms preexposed to nickel. Both pesticide administration and exposure to nickel caused an increase in the GST activity in examined organs and CAT activity in body wall. Both biometric and development data and simple enzymatic analysis, especially the AChE and GST, show a Ni pretreatment effect on the subsequent susceptibility to pesticide. 1. Introduction Eisenia fetida is a frequently used earthworm in toxicological and ecotoxicological investigations, since the standardized tests have been launched and commonly approved, and respecting all limits reassumed by Scott-Fordsmand and Weeks [1], Furst [2], and Spurgeon et al. [3], the obtained results may be compared and used as a background in further toxicological experiments. Nickel, generally, is present in soil in very low concentrations, but in some extreme ecosystems, for example, soils contaminated with pig manure [4] and ultramafic soils [5, 6], Ni should be treated as a main toxic and life-limiting factor, and its hyperaccumulation in invertebrates inhabiting this milieu is observed [7]. Earthworms are not only the passive subject of exposition to metals in soils, but, being an important component of soil ecosystems, they could play a significant role in further bioavailability and toxicity of metals [8]. Toxicity of nickel to earthworms was studied by Scott-Fordsmand et al. [9]; the authors of a 4-week experiment on Eisenia veneta established some key parameters like “no observable effect concentration” (NOEC), “lowest observable effect concentration” (LOEC), and EC10 and EC50 for mortality and reproduction endpoints. NOEC and LOEC for mortality were

References

[1]  J. J. Scott-Fordsmand and J. M. Weeks, “Biomarkers in earthworms,” Reviews of Environmental Contamination and Toxicology, vol. 165, pp. 117–159, 2000.
[2]  A. Furst, “My saga with earthworms,” Food and Chemical Toxicology, vol. 40, no. 6, pp. 789–791, 2002.
[3]  D. J. Spurgeon, J. M. Weeks, and C. A. M. van Gestel, “A summary of eleven years progress in earthworm ecotoxicology,” Pedobiologia, vol. 47, no. 5-6, pp. 588–606, 2003.
[4]  J. Bak, J. Jensen, M. M. Larsen, G. Pritzl, and J. Scott-Fordsmand, “A heavy metal monitoring-programme in Denmark,” Science of the Total Environment, vol. 207, no. 2-3, pp. 179–186, 1997.
[5]  R. D. Reeves and A. J. M. Baker, “Metal-accumulating plants,” in Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, I. Raskin and B. D. Ensley, Eds., pp. 139–229, John Wiley & Sons, New York, NY, USA, 2000.
[6]  C. Sirguey, S. Masoura, C. Schwartz, G. Echevarria, and J. L. Morel, “Phytoextraction and bioavailability of Cd and Ni in soils,” in Ultramafic Rocks: Their Soils, Vegetation and Fauna. Proceedings of the Fourth International Conference on Serpentine Ecology, R. S. Boyd, A. J. M. Baker, and J. Proctor, Eds., pp. 305–310, Science Reviews, St Albans, UK, 2003.
[7]  M. Augustyniak, J. Mesjasz-Przybylowicz, M. Nakonieczny, M. Dybowska, W. Przybylowicz, and P. Migula, “Food relations between Chrysolina pardalina and Berkheya coddii, a nickel hyperaccumulator from South African ultramafic outcrops,” Fresenius Environmental Bulletin, vol. 11, no. 2, pp. 85–90, 2002.
[8]  M. I. Zorn, C. A. M. van Gestel, and H. Eijsackers, “The effect of Lumbricus rubellus and Lumbricus terrestris on zinc distribution and availability in artificial soil columns,” Biology and Fertility of Soils, vol. 41, no. 3, pp. 212–215, 2005.
[9]  J. J. Scott-Fordsmand, J. M. Weeks, and S. P. Hopkin, “Toxicity of nickel to the earthworm and the applicability of the neutral red retention assay,” Ecotoxicology, vol. 7, no. 5, pp. 291–295, 1998.
[10]  K. Lock and C. R. Janssen, “Ecotoxicity of nickel to Eisenia fetida, Enchytraeus albidus and Folsomia candida,” Chemosphere, vol. 46, no. 2, pp. 197–200, 2002.
[11]  A. Dhainaut and P. Scaps, “Immune defense and biological responses induced by toxics in Annelida,” Canadian Journal of Zoology, vol. 79, no. 2, pp. 233–253, 2001.
[12]  P. ?aszczyca, M. Augustyniak, A. Babczyńska et al., “Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland),” Environment International, vol. 30, no. 7, pp. 901–910, 2004.
[13]  J. M. Weeks, D. J. Spurgeon, C. Svendsen et al., “Critical analysis of soil invertebrate biomarkers: a field case study in Avonmouth, UK,” Ecotoxicology, vol. 13, no. 8, pp. 817–822, 2004.
[14]  L. H. Booth, V. Heppelthwaite, and A. McGlinchy, “The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodea caliginosa),” Biomarkers, vol. 5, no. 1, pp. 46–55, 2000.
[15]  E. L. B. Novelli, N. L. Rodrigues, and B. O. Ribas, “Superoxide radical and toxicity of environmental nickel exposure,” Human and Experimental Toxicology, vol. 14, no. 3, pp. 248–251, 1995.
[16]  D. J. Spurgeon, M. A. Tomlin, and S. P. Hopkin, “Influence of temperature on the toxicity of zinc to the earthworm Eisenia fetida,” Bulletin of Environmental Contamination and Toxicology, vol. 58, no. 2, pp. 283–290, 1997.
[17]  A. Ostrowska, S. Gawlinski, and Z. Szczubialka, Methods of Analysis and Evaluation of the Soil and Plants Properties, Instytut Ochrony Srodowiska, Warsaw, Poland, 1991 (Polish).
[18]  OECD (Organization for the Economic Cooperation and Development), Guidelines for the Testing of Chemicals, Earthworm Acute Toxicity Tests no 207, Original Adoption, 1984.
[19]  V. J. G. Houba, T. M. Lexmond, I. Novozamsky, and J. J. van der Lee, “State of the art and future developments in soil analysis for bioavailability assessment,” Science of the Total Environment, vol. 178, pp. 21–28, 1996.
[20]  I. Barrera, P. Andrés, and J. M. Alca?iz, “Sewage sludge application on soil: effects on two earthworm species,” Water, Air, and Soil Pollution, vol. 129, no. 1–4, pp. 319–332, 2001.
[21]  P. Scaps, C. Grelle, and M. Descamps, “Cadmium and lead accumulation in the earthworm Eisenia fetida (Savigny) and its impact on cholinesterase and metabolic pathway enzyme activity,” Comparative Biochemistry and Physiology C, vol. 116, no. 3, pp. 233–238, 1997.
[22]  C. Dauberschmidt, D. R. Dietrich, and C. Schlatter, “Esterases in the zebra mussel Dreissena polymorpha: activities, inhibition, and binding to organophosphates,” Aquatic Toxicology, vol. 37, no. 4, pp. 295–305, 1997.
[23]  H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984.
[24]  S. J. Yu, “Host plant induction of glutathione S-transferase in the fall armyworm,” Pesticide Biochemistry and Physiology, vol. 18, no. 1, pp. 101–106, 1982.
[25]  M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[26]  F. Leduc, J. K. Whalen, and G. I. Sunahara, “Growth and reproduction of the earthworm Eisenia fetida after exposure to leachate from wood preservatives,” Ecotoxicology and Environmental Safety, vol. 69, no. 2, pp. 219–226, 2008.
[27]  T. Jager, S. A. Reinecke, and A. J. Reinecke, “Using process-based modelling to analyse earthworm life cycles,” Soil Biology and Biochemistry, vol. 38, no. 1, pp. 1–6, 2006.
[28]  T. Phipps, S. L. Tank, J. Wirtz et al., “Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms,” Environmental Reviews, vol. 10, no. 4, pp. 209–261, 2002.
[29]  E. F. Neuhauser, Z. V. Cukic, M. R. Malecki, R. C. Loehr, and P. R. Durkin, “Bioconcentration and biokinetics of heavy metals in the earthworm,” Environmental Pollution, vol. 89, no. 3, pp. 293–301, 1995.
[30]  M. Saint-Denis, J. F. Narbonne, C. Arnaud, and D. Ribera, “Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of lead acetate,” Soil Biology and Biochemistry, vol. 33, no. 3, pp. 395–404, 2001.
[31]  S. Panda and S. K. Sahu, “Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaeta) following application of three pesticides to soil,” Chemosphere, vol. 55, no. 2, pp. 283–290, 2004.
[32]  M. J. Jonker, A. M. Piskiewicz, N. Ivorra i Castellá, and J. E. Kammenga, “Toxicity of binary mixtures of cadmium-copper and carbendazim-copper to the nematode Caenorhabditis elegans,” Environmental Toxicology and Chemistry, vol. 23, no. 6, pp. 1529–1537, 2004.
[33]  Y. Y. Mosleh, S. Paris-Palacios, M. Couderchet, S. Biagianti-Risbourg, and G. Vernet, “Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae),” Ecotoxicology, vol. 14, no. 5, pp. 559–571, 2005.
[34]  P. K. Hankard, C. Svendsen, J. Wright et al., “Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis,” Science of the Total Environment, vol. 330, no. 1–3, pp. 9–20, 2004.
[35]  S. J?nsch, G. K. Frampton, J. R?mbke, P. J. van den Brink, and J. J. Scott-Fordsmand, “Effects of pesticides on soil invertebrates in model ecosystem and field studies: a review and comparison with laboratory toxicity data,” Environmental Toxicology and Chemistry, vol. 25, no. 9, pp. 2490–2501, 2006.
[36]  M. J. Jonker, R. A. J. C. Sweijen, and J. E. Kammenga, “Toxicity of simple mixtures to the nematode Caenorhabditis elegans in relation to soil sorption,” Environmental Toxicology and Chemistry, vol. 23, no. 2, pp. 480–488, 2004.
[37]  G. K. Frampton, S. J?nsch, J. J. Scott-Fordsmand, J. R?mbke, and P. J. van den Brink, “Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions,” Environmental Toxicology and Chemistry, vol. 25, no. 9, pp. 2480–2489, 2006.
[38]  C. Pelosi, S. Barot, Y. Capowiez, M. Hedde, and F. Vandenbulcke, “Pesticides and earthworms. A review,” Agronomy for Sustainable Development, 2013.
[39]  S. Yasmin and D. D'Souza, “Effects of pesticides on the growth and reproduction of earthworm: a review,” Applied and Environmental Soil Science, vol. 2010, Article ID 678360, 9 pages, 2010.
[40]  A. Zawisza-Raszka and B. Dolezych, “Acetylcholinesterase, catalase and glutathione S-transferase activity in beet armyworm (Spodoptera exigua) exposed to nickel and/or diazinon,” Acta Biologica Hungarica, vol. 59, no. 1, pp. 31–45, 2008.
[41]  A. Zawisza-Raszka, B. Dolezych, S. Dolezych, P. Migula, and M. Ligaszewski, “Effects of nickel exposure and acute pesticide intoxication on acetylcholinesterase, catalase and glutathione S-transferase activity and glucose absorption in the digestive tract of Helix aspersa (Pulmonata, Helicidae),” International Journal of Environment and Pollution, vol. 40, no. 4, pp. 380–390, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133