全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Is Ridge Cultivation Sustainable? A Case Study from the Haean Catchment, South Korea

DOI: 10.1155/2013/679467

Full-Text   Cite this paper   Add to My Lib

Abstract:

Non-sustainable agricultural practices can alter the quality of soil and water. A sustainable soil management requires detailed understanding of how tillage affects soil quality, erosion, and leaching processes. Agricultural soils in the Haean catchment (South Korea) are susceptible to erosion by water during the monsoon. For years, erosion-induced losses have been compensated by spreading allochthonous sandy material on the fields. These anthropogenically modified soils are used for vegetable production, and crops are cultivated in ridges using plastic mulches. To evaluate whether the current practice of ridge cultivation is sustainable with regard to soil quality and soil and water conservation, we (i) analysed soil properties of topsoils and (ii) carried out dye tracer experiments. Our results show that the sandy topsoils have a very low soil organic matter content and a poor structure and lack soil burrowers. The artificial layering induced by spreading sandy material supported lateral downhill water flow. Ridge tillage and plastic mulching strongly increased surface runoff and soil erosion. We conclude that for this region a comprehensive management plan, which aims at long-term sustainable agriculture by protecting topsoils, increasing soil organic matter, and minimizing runoff and soil erosion, is mandatory for the future. 1. Introduction Ecosystem services and agriculture are closely related and affect each other. On the one hand, ecosystems used for agriculture produce food, reduce hunger, and improve public health—services that become more and more important in view of a growing world population. On the other hand, agricultural mismanagement can reduce the ability of ecosystems to provide these goods and services [1, 2]. Soils play a key role in providing supporting and regulating services such as soil fertility, soil retention, nutrient cycling, and carbon sequestration [3]. Appropriately managed soils in agricultural ecosystems can contribute to soil and water conservation [4], while poorly managed systems may deteriorate ecosystem services by high nutrient and sediment losses from agricultural fields. Possible consequences are soil degradation, declining water quality, water pollution, and increasing costs for water purification [5, 6]. The major goal in agriculture is therefore a sustainable management that minimizes the risk of soil and environmental degradation [7] and at the same time ensures improved yields and ecosystem services [2]. Agricultural production in South Korea faces an enormous pressure due to its limited arable land of

References

[1]  D. Tilman, J. Fargione, B. Wolff et al., “Forecasting agriculturally driven global environmental change,” Science, vol. 292, no. 5515, pp. 281–284, 2001.
[2]  D. Tilman, K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky, “Agricultural sustainability and intensive production practices,” Nature, vol. 418, no. 6898, pp. 671–677, 2002.
[3]  V. H. Dale and S. Polasky, “Measures of the effects of agricultural practices on ecosystem services,” Ecological Economics, vol. 64, no. 2, pp. 286–296, 2007.
[4]  H. Godfray, “Food security: the challenge of feeding 9 billion people,” Science, vol. 327, pp. 812–818, 2010.
[5]  R. Lal, “Soils and sustainable agriculture. A review,” Agronomy for Sustainable Development, vol. 28, no. 1, pp. 57–64, 2008.
[6]  J. H. J. Spiertz, “Nitrogen, sustainable agriculture and food security. A review,” Agronomy for Sustainable Development, vol. 30, no. 1, pp. 43–55, 2010.
[7]  R. Lal, “Laws of sustainable soil management,” Agronomy for Sustainable Development, vol. 29, no. 1, pp. 7–9, 2009.
[8]  A. M. Saveda and W. Shaw, Eds., South Korea: A Country Study, GPO for the Library of Congress, 1990.
[9]  B. Kim, J.-H. Park, G. Hwang, M.-S. Jun, and K. Choi, “Eutrophication of reservoirs in South Korea,” Limnology, vol. 2, no. 3, pp. 223–229, 2001.
[10]  S. J. Hwang, S. K. Kwun, and C. G. Yoon, “Water quality and limnology of korean reservoirs,” Paddy and Water Environment, vol. 1, pp. 43–52, 2003.
[11]  G. Kim, S. Chung, and C. Lee, “Water quality of runoff from agricultural-forestry watersheds in the geum river basin, Korea,” Environmental Monitoring and Assessment, vol. 134, no. 1–3, pp. 441–452, 2007.
[12]  J. Hendrickx and M. Flury, “Uniform and preferential flow mechanisms in the vadose zone,” in Conceptual Models of Flow and Transport in the Fractured Vadose Zone, N. R. Council, Ed., National Academy Press, Washington, DC, USA, 2001.
[13]  C. Bogner, D. Gaul, A. Kolb, I. Schmiedinger, and B. Huwe, “Investigating flow mechanisms in a forest soil by mixed-effects modelling,” European Journal of Soil Science, vol. 61, no. 6, pp. 1079–1090, 2010.
[14]  T. J. Gish, D. Gimenez, and W. J. Rawls, “Impact of roots on ground water quality,” Plant and Soil, vol. 200, no. 1, pp. 47–54, 1998.
[15]  J. ?im?nek, N. J. Jarvis, M. T. Van Genuchten, and A. G?rden?s, “Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone,” Journal of Hydrology, vol. 272, no. 1–4, pp. 14–35, 2003.
[16]  S. Bachmair, M. Weiler, and G. Nützmann, “Controls of land use and soil structure on water movement: lessons for pollutant transfer through the unsaturated zone,” Journal of Hydrology, vol. 369, no. 3-4, pp. 241–252, 2009.
[17]  N. J. Jarvis, “A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality,” European Journal of Soil Science, vol. 58, no. 3, pp. 523–546, 2007.
[18]  W. Lament, “Plastic mulches for the production of vegetable crops,” HortTechnoloqy, vol. 3, no. 1, pp. 35–39, 1993.
[19]  S. Kim, J. Yang, C. Park, Y. Jung, and B. Cho, “Effects of winter cover crop of ryegrass(lolium multiflorum) and soil conservation practices on soil erosion and quality in thesloping uplands,” Journal of Applied Biological Chemistry, vol. 55, pp. 22–28, 2007.
[20]  G. Lee, J. Lee, J. Ryu et al., “Status and soil management problems of highland agriculture of the main mountainous region in the south korea,” in Proceedings of the 19th World Congress of Soil Science, R. J. Gilkes and N. Prakongkep, Eds., Soil solutions for a changing world, International Union of Soil Sciences, 2010.
[21]  R. P. C. Morgan, Soil Erosion and Conservation, Blackwell, Malden, Mass, USA, 2005.
[22]  J.-H. Park, L. Duan, B. Kim, M. J. Mitchell, and H. Shibata, “Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia,” Environment International, vol. 36, no. 2, pp. 212–225, 2010.
[23]  lUSS Working Group WRB, “World reference base for soil resources 2006—a frame-work for international classification, correlation and communication,” World Soil Resources Reports 103, FAO, Rome, Italy, 2006, ftp://ftp.fao.org/agl/agll/docs/wsrr103e.pdf.
[24]  M. Flury and H. Fluhler, “Tracer characteristics of brilliant blue FCF,” Soil Science Society of America Journal, vol. 59, no. 1, pp. 22–27, 1995.
[25]  J. Lu and L. Wu, “Visualizing bromide and iodide water tracer in soil profiles by spray methods,” Journal of Environmental Quality, vol. 32, no. 1, pp. 363–367, 2003.
[26]  C. Steger, M. Ulrich, and C. Wiedemann, Machine Vision Algorithms and Applications, John Wiley & Sons, Weinheim, Germany, 2008.
[27]  B. Trancón y Widemann and C. Bogner, “Image analysis for soil dye tracer infiltration studies,” in Proceedings of the 3rd International Conference on Image Processing Theory, Tools and Applications, pp. 409–414, 2012.
[28]  C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423, 1948.
[29]  R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2012, http://www.r-project.org/.
[30]  M. Ruidisch, J. Kettering, S. Arnhold, and B. Huwe, “Modeling water flow in a plastic-mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon,” Agricultural Water Management, vol. 116, pp. 204–217, 2013.
[31]  P. G. Saffigna, C. B. Tanner, and D. R. Keeney, “Non-uniform infiltration under potatocanopies caused by interception, stemflow, and hilling,” Agronomy Journal, vol. 68, no. 2, pp. 337–342, 1976.
[32]  M. Leistra and J. J. T. I. Boesten, “Pesticide leaching from agricultural fields with ridges and furrows,” Water, Air, and Soil Pollution, vol. 213, no. 1–4, pp. 341–352, 2010.
[33]  S. Arnhold, M. Ruidisch, S. Bartsch, C. Shope, and B. Huwe, “Simulation of run patterns and soil erosion on mountainous farmland with and without plastic covered ridge-furrowcultivation in South Korea,” Transactions of the ASABE, vol. 56, no. 2, pp. 667–679, 2013.
[34]  C. T. Petersen, S. Hansen, and H. E. Jensen, “Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage,” Hydrology and Earth System Sciences, vol. 4, pp. 769–776, 1997.
[35]  M. Weiler and F. Naef, “An experimental tracer study of the role of macropores in infiltration in grassland soils,” Hydrological Processes, vol. 17, no. 2, pp. 477–493, 2003.
[36]  B. Gjettermann, K. L. Nielsen, C. T. Petersen, H. E. Jensen, and S. Hansen, “Preferential flow in sandy loam soils as affected by irrigation intensity,” Soil Technology, vol. 11, no. 2, pp. 139–152, 1997.
[37]  C. Bogner, M. Mirzaei, S. Ruy, and B. Huwe, “Microtopography, water storage and flow patterns in a fine-textured soil under agricultural use,” Hydrological Processes, vol. 27, no. 12, pp. 1797–1806, 2012.
[38]  J. Kettering, M. Ruidisch, C. Gaviria, Y. Ok, and Y. Kuzyakov, “Fate of fertilizer 15N in intensive ridge cultivation with plastic mulching under a monsoon climate,” Nutrient Cycling in Agroecosystems, vol. 95, pp. 57–72, 2013.
[39]  A. Wallace, “High-precision agriculture is an excellent tool for conservation of natural resources,” Communications in Soil Science and Plant Analysis, vol. 25, pp. 45–49, 1994.
[40]  M. Ruidisch, S. Bartsch, J. Kettering, B. Huwe, and S. Frei, “The effect of fertilizer bestmanagement practices on nitrate leaching in a plastic mulched ridge cultivation system,” Agriculture, Ecosystems and Environment, vol. 169, pp. 21–32, 2013.
[41]  C. J. Barrow, “Biochar: potential for countering land degradation and for improving agriculture,” Applied Geography, vol. 34, pp. 21–28, 2012.
[42]  S. M. Dabney, J. A. Delgado, and D. W. Reeves, “Using winter cover crops to improve soil and water quality,” Communications in Soil Science and Plant Analysis, vol. 32, no. 7-8, pp. 1221–1250, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133