全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Uptake of Sulfadiazine Sulfonamide from Water by Clinoptilolite

DOI: 10.1155/2013/648697

Full-Text   Cite this paper   Add to My Lib

Abstract:

The interactions between sulfadiazine (SDZ), a sulfonamide antibiotic, and clinoptilolite, a hydrophilic zeolite, were investigated under batch experimental conditions. The uptake of SDZ on the zeolite followed a linear sorption isotherm under neutral pH conditions. Higher SDZ uptake on the zeolite was observed when solution pH was below the or above the values of SDZ, while minimal SDZ uptake was observed when the solution pH was between the and values of SDZ. These observations suggested that hydrophobic interaction between SDZ and the zeolite was minimal due to the hydrophilic nature of the substrate. Electrostatic interactions and ion bridging were attributed to the elevated SDZ uptake under low and high pH conditions. As SDZ had a low value, the hydrophilic nature of the substrate prevented extensive uptake of SDZ, which could contribute to its extensive detection in the environment, including surface water and wastewater. 1. Introduction The worldwide use of veterinary antibiotics poses a continuous threat to the environment. Used extensively in human and animal medicine, sulfonamide antibiotics (SAs) were highly stable towards hydrolysis, resulting in accumulations in the environment [1]. Neutral and cationic SAs interacted primarily with external surfaces, instead of intercalating into the swelling clay mineral montmorillonite [2]. However, conflicting results were reported on the stability of adsorbed SAs to solid surfaces. Adsorption of SAs to mineral soil colloids was weaker and resulted in a stronger desorption from clay-size fractions [3]. The distribution coefficients ( ) of SAs were overall low, <10?L/kg on many types of soils, thus likely to be highly mobile in the environment [4–6]. Slightly high values were reported for SAs sorption on pure clays, while organic matter had higher affinities for neutral SAs than smectite clays [7]. Sulfadiazine [SDZ, 4-amino-N-(2-pyrimidinyl)benzenesulfonamide] is a widely used potent antibacterial agent belonging to SAs. [8]. It was the second highest sold antibiotic in UK with a usage of 14 tons in 2000 [9]. Due to its extensive use in veterinary medicine and frequent detection in the environment, a few studies were conducted on SDZ adsorption on soil materials and manure [3, 10]. In addition, a detailed literature review on the analysis, fate, and effects of SDZ on soil ecosystems indicated that, in applying manure from antibiotic-treated animals to arable soils, SDZ could reach the environment, but the fate and transformation processes and the consequences for soil microorganisms and soil functions

References

[1]  A. Bia?k-Bielińska, S. Stolte, M. Matzke et al., “Hydrolysis of sulphonamides in aqueous solutions,” Journal of Hazardous Materials, vol. 221-222, pp. 264–274, 2012.
[2]  J. Gao and J. A. Pedersen, “Adsorption of sulfonamide antimicrobial agents to clay minerals,” Environmental Science and Technology, vol. 39, no. 24, pp. 9509–9516, 2005.
[3]  S. Thiele-Bruhn, T. Seibicke, H.-R. Schulten, and P. Leinweber, “Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions,” Journal of Environmental Quality, vol. 33, no. 4, pp. 1331–1342, 2004.
[4]  A. B. A. Boxall, P. Blackwell, R. Cavallo, P. Kay, and J. Tolls, “The sorption and transport of a sulphonamide antibiotic in soil systems,” Toxicology Letters, vol. 131, no. 1-2, pp. 19–28, 2002.
[5]  W. Lertpaitoonpan, S. K. Ong, and T. B. Moorman, “Effect of organic carbon and pH on soil sorption of sulfamethazine,” Chemosphere, vol. 76, no. 4, pp. 558–564, 2009.
[6]  D. Avisar, O. Primor, I. Gozlan, and H. Mamane, “Sorption of sulfonamides and tetracyclines to montmorillonite clay,” Water, Air, and Soil Pollution, vol. 209, no. 1–4, pp. 439–450, 2010.
[7]  J. Gao and J. A. Pedersen, “Sorption of sulfonamide antimicrobial agents to humic acid-clay complexes,” Journal of Environmental Quality, vol. 39, no. 1, pp. 228–235, 2010.
[8]  P. Sukul, M. Lamsh?ft, S. Zühlke, and M. Spiteller, “Photolysis of 14C-sulfadiazine in water and manure,” Chemosphere, vol. 71, no. 4, pp. 717–725, 2008.
[9]  A. K. Sarmah, M. T. Meyer, and A. B. A. Boxall, “A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment,” Chemosphere, vol. 65, no. 5, pp. 725–759, 2006.
[10]  P. Sukul, M. Lamsh?ft, S. Zühlke, and M. Spiteller, “Sorption and desorption of sulfadiazine in soil and soil-manure systems,” Chemosphere, vol. 73, no. 8, pp. 1344–1350, 2008.
[11]  K. Schauss, A. Focks, H. Heuer et al., “Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems,” Trends in Analytical Chemistry, vol. 28, no. 5, pp. 612–618, 2009.
[12]  M. Unold, R. Kasteel, J. Groeneweg, and H. Vereecken, “Transport and transformation of sulfadiazine in soil columns packed with a silty loam and a loamy sand,” Journal of Contaminant Hydrology, vol. 103, no. 1-2, pp. 38–47, 2009.
[13]  T. Müller, I. Rosendahl, A. Focks, J. Siemens, J. Klasmeier, and M. Matthies, “Short-term extractability of sulfadiazine after application to soils,” Environmental Pollution, vol. 172, pp. 180–185, 2013.
[14]  K. M. Doretto and S. Rath, “Sorption of sulfadiazine on Brazilian soils,” Chemosphere, vol. 90, no. 6, pp. 2027–2034, 2013.
[15]  I. Braschi, G. Gatti, G. Paul, C. E. Gessa, M. Cossi, and L. Marchese, “Sulfonamide antibiotics embedded in high silica zeolite Y: a combined experimental and theoretical study of host-guest and guest-guest interactions,” Langmuir, vol. 26, no. 12, pp. 9524–9532, 2010.
[16]  Z. Li and R. S. Bowman, “Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite,” Environmental Science and Technology, vol. 31, no. 8, pp. 2407–2412, 1997.
[17]  E. Sullivan, D. Hunter, and R. S. Bowman, “Topological and thermal properties of surfactant-modified clinoptilolite studied by tapping-mode? atomic force microscopy and high-resolution thermogravimetric analysis,” Clays and Clay Minerals, vol. 45, no. 1, pp. 42–53, 1997.
[18]  H. Sakurai and T. Ishimitsu, “Microionization constants of sulphonamides,” Talanta, vol. 27, no. 3, pp. 293–298, 1980.
[19]  J. Witt, Pharmacokinetics of Sulfadiazine in Pigs, der Universit?t Osnabrück, Osnabrück, Germany, 2006.
[20]  J.-B. Park, S.-H. Lee, J.-W. Lee, and C.-Y. Lee, “Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B),” Journal of Hazardous Materials, vol. 95, no. 1-2, pp. 65–79, 2002.
[21]  L. Wu, Z. L. Li, N. Hoeppner, G. Lv, and L. Liao, “Interactions between sulfa drug sulfadiazine and hydrophobic talc surfaces,” Colloids and Surfaces A, 2014.
[22]  C.-J. Wang, Z. Li, W.-T. Jiang, J.-S. Jean, and C.-C. Liu, “Adsorption and intercalation properties of antibiotic ciprofloxacin on montmorillonite,” Journal of Hazardous Materials, vol. 183, no. 1–3, pp. 309–314, 2010.
[23]  Q. Wu, Z. Li, H. Hong, K. Yin, and L. Tie, “Adsorption and intercalation of ciprofloxacin on montmorillonite,” Applied Clay Science, vol. 50, no. 2, pp. 204–211, 2010.
[24]  P.-H. Chang, Z. Li, T.-L. Yu et al., “Sorptive removal of tetracycline from water by palygorskite,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 148–155, 2009.
[25]  I. Turku, T. Sainio, and E. Paatero, “Thermodynamics of tetracycline adsorption on silica,” Environmental Chemistry Letters, vol. 5, no. 4, pp. 225–228, 2007.
[26]  C. Zarfl, Chemical Fate of Sulfadiazine in Soil: Mechanisms and Modelling Approaches, der Universit?t Osnabrück, Osnabrück, Germany, 2008.
[27]  S. Thiele-Bruhn, “Pharmaceutical antibiotic compounds in soils-a review,” Journal of Plant Nutrition and Soil Science, vol. 166, no. 2, pp. 145–167, 2003.
[28]  W. Yang, F. Zheng, X. Xue, and Y. Lu, “Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents,” Journal of Colloid and Interface Science, vol. 362, no. 2, pp. 503–509, 2011.
[29]  M. J. Prieto, D. Bacigalupe, O. Pardini et al., “Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent,” International Journal of Pharmaceutics, vol. 326, no. 1-2, pp. 160–168, 2006.
[30]  P. Guru, R. K. Gautam, and M. P. Goutam, “Synthesis, spectral and toxicological studies of complex Zn(II) with sulfadiazine,” Chemical Papers, vol. 58, no. 5, pp. 341–347, 2004.
[31]  A. Martucci, M. A. Cremonini, S. Blasioli et al., “Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: a structural and spectroscopic combined study,” Microporous and Mesoporous Materials, vol. 170, pp. 274–286, 2013.
[32]  P. A. Ajibade and G. A. Kolawole, “Synthesis, characterization, antiplasmodial and antitrypanosomal activity of some metal(III) complexes of sulfadiazine,” Bulletin of the Chemical Society of Ethiopia, vol. 22, no. 2, pp. 261–268, 2008.
[33]  G. Huschek, D. Hollmann, N. Kurowski, M. Kaupenjohann, and H. Vereecken, “Re-evaluation of the conformational structure of sulfadiazine species using NMR and ab initio DFT studies and its implication on sorption and degradation,” Chemosphere, vol. 72, no. 10, pp. 1448–1454, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413