全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nursery Growing Media: Agronomic and Environmental Quality Assessment of Sewage Sludge-Based Compost

DOI: 10.1155/2013/565139

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is a stringent need to reduce the environmental impact of peat in the plant nursery production chain. In this experiment, the use of different rates of sewage sludge compost in the preparation of growing media for potted Bougainvillea was evaluated to assess its efficiency for the replacement of peat and to quantify the environmental impact of such alternative substrates by the life cycle assessment (LCA) method. Five substrates containing increasing proportion of composted sewage sludge to peat (0%, 25%, 40%, 55%, and 70% v/v) were used, and their physicochemical properties were measured. Bougainvillea plant growth, biomass production, and macro- and micronutrient absorption were also determined. The main results were that compost addition improved the plant nutrient and increased the substrate pH, electrical conductivity (EC), and dry bulk density values. Globally, the results showed that compost could be used at up to 55% by volume with no negative effects on plant growth. The LCA showed that use of compost reduced the environmental loads of the growth media, except the Global Warming Potential value (GWP100). Environmental implications of the use of compost in the plant nursery chain are discussed. 1. Introduction Ornamental plant nursery production is one of the most specialized examples of intensive agriculture, with the large use of nonrenewable resources to maximize plant growth and reduce production time in an effort to capitalize on-sale profits. Because of this, the “green industry” is often considered a nonpoint (or diffused) polluting industry, due to the low efficiency in the management practices. The most common growing media used in Mediterranean ornamental nursery is peat, alone or mixed with inorganic coarse materials [1], because of its good chemical and physical properties. The development of substrates alternative to peat is necessary for three main reasons: (i) peat resources are limited and costly; (ii) the social pressure to reuse the waste resulting from human or industrial activities is growing rapidly, (iii) the economic need for reusing locally produced waste is more and more urgent [2, 3]. In Italian ornamental nurseries the cost of the substrate affects by up to 12–15% the overall production cost of the potted plants [4]. It is appropriate to consider replacing peat with other organic resources with favorable economically and environmentally features [5]. Composted organic wastes, properly mixed, can make excellent substrates for vegetable transplants [6, 7], especially sewage sludge due to its widespread production.

References

[1]  E. Rea, F. Pierandrei, S. Rinaldi, B. De Lucia, L. Vecchietti, and A. Ventrelli, “Effect of compost-based alternative substrata in potted Aloe vera (L.) Burm. F.,” Acta Horticulturae, vol. 807, pp. 541–546, 2009.
[2]  M. Raviv, “The future of composts as ingredients of growing media,” Acta Horticulturae, vol. 891, pp. 19–32, 2011.
[3]  M. Abad, P. Noguera, and S. Burés, “National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain,” Bioresource Technology, vol. 77, no. 2, pp. 197–200, 2001.
[4]  B. De Lucia, L. Vecchietti, and A. Leone, “Italian buckthorn response to compost based substrates,” Acta Horticulturae, vol. 891, pp. 231–236, 2011.
[5]  C. Mininni, P. Santamaria, H. M. Abdelrahman et al., “Posidonia-based compost as a peat substitute for lettuce transplant production,” HortScience, vol. 47, no. 10, pp. 1438–1444, 2012.
[6]  O. Verdonck, “Composts from organic waste materials as substitutes for the usual horticultural substrates,” Biological Wastes, vol. 26, no. 4, pp. 325–330, 1988.
[7]  F. R. Gouin, “Utilization of sewage sludge compost in horticulture,” HortTechnology, vol. 3, no. 2, pp. 161–163, 1993.
[8]  L. Mancini and B. De Lucia, “Organic and mineral soil fertilisation in gladiolus,” Compost Science and Utilization, vol. 19, no. 3, pp. 178–181, 2011.
[9]  M. D. Perez-Murcia, R. Moral, J. Moreno-Caselles, A. Perez-Espinosa, and C. Paredes, “Use of composted sewage sludge in growth media for broccoli,” Bioresource Technology, vol. 97, no. 1, pp. 123–130, 2006.
[10]  G. Russo and B. De Lucia Zeller, “Environmental evaluation by means of LCA regarding the ornamental nursery production in rose and sowbread greenhouse cultivation,” Acta Horticulturae, vol. 801, pp. 1597–1604, 2008.
[11]  G. Russo, G. Scarascia Mugnozza, and B. De Lucia Zeller, “Environmental improvements of greenhouse flower cultivation by means of LCA methodology,” Acta Horticulturae, vol. 801, pp. 301–308, 2008.
[12]  M. A. Antón, P. Mu?oz, F. Castells, J. I. Montero, and M. Soliva, “Improving waste management in protected horticulture,” Agronomy for Sustainable Development, vol. 25, no. 4, pp. 447–453, 2005.
[13]  Quantis Sàrl, “EPAGMA Project-final report-comparative life cycle assessment of horticultural growing media based on peat and other growing media constituents,” Parc Scientifique de l'EPFL Batiment D, Quantis Sàrl, Lausanne, Switzerland, 2012.
[14]  U. Sonesson, A. Bj?rklund, M. Carlsson, and M. Dalemo, “Environmental and economic analysis of management systems for biodegradable waste,” Resources, Conservation and Recycling, vol. 28, no. 1-2, pp. 29–53, 2000.
[15]  A. Bernal-Vicente, M. Ros, F. Tittarelli, F. Intrigliolo, and J. A. Pascual, “Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects,” Bioresource Technology, vol. 99, no. 18, pp. 8722–8728, 2008.
[16]  “European Standard 12579, 12580, Determination of a quantity,” in Soil Improvers and Growing Media, European Committee for Standardization, Brussels, Belgium, 1999.
[17]  “European Standard 13037, 38, 41. Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density,” in Soil Improvers and Growing Media, European Committee for Standardization, Brussels, Belgium, 1999.
[18]  F. Zucconi, A. Monaco, and M. Forte, “Phytotoxins during the stabilisation of organic matter,” in Composting of Agricultural and Other Wastes, J. K. R. Gasser, Ed., pp. 73–85, Elsevier Applied Science Publications, London, UK, 1985.
[19]  ISO, “International Organization of Standardization 14040-environmental management-life cycle assessment-principles and framework,” Tech. Rep. 14040, International Organisation for Standardization, Geneva, Switzerland, 1999.
[20]  E. Cadena, J. Colón, A. Sánchez, X. Font, and A. Artola, “A methodology to determine gaseous emissions in a composting plant,” Waste Management, vol. 29, no. 11, pp. 2799–2807, 2009.
[21]  J. B. Guinée, M. Gorrée, R. Heijungs, G. Huppes, R. Kleijn, and A. de Koning, “Life cycle assessment; An operational guide to the ISO standards,” Final Report, Ministry of Housing, Spatial Planning and Environment (VROM) and Centrum voor Milieukunde (CML), Rijksuniversiteit Den Haag, Leiden, The Netherlands, 2001.
[22]  G. Russo, S. Ingravalle, B. De Lucia Zeller, and L. Vecchietti, “Enviromental and productive comparison of growing-media obtained by composts of different organic wastes,” in Proceedings of International Conference on Agricultural Engineering & Industry Exhibition, pp. 23–25, EURAGENG (European Society of Agricultural Engineers), Crete, Greece, June 2008.
[23]  T. G. L. Aendekerk, H. Cevat, N. Dolmans et al., International Substrate Manual: Analysis, Characteristics, Recommendations, Elsevier International Business Doetinchem, Amsterdam, The Netherlands, Frank-Paul Ter Berg.
[24]  C. Tognetti, M. J. Mazzarino, and F. Laos, “Improving the quality of municipal organic waste compost,” Bioresource Technology, vol. 98, no. 5, pp. 1067–1076, 2007.
[25]  B. De Lucia, G. Cristiano, L. Vecchietti, and L. Bruno, “Effect of different rates of composted organic amendments on urban soil properties, growth and nutrient status of three Mediterranean native hedge species,” Urban Forestry & Urban Greening, 2013, http://dx.doi.org/10.1016/j.ufug.2013.07.008.
[26]  B. De Lucia, L. Vecchietti, S. Rinaldi, C. M. Rivera, A. Trinchera, and E. Rea, “Effect of peat-reduced and peat-free substrates on Rosmarinus officinalis L. growth,” Journal of Plant Nutrition, vol. 36, no. 6, pp. 863–876, 2013.
[27]  P. R. Hidalgo and R. L. Harkess, “Fertilizer effect on chrysanthemum production by vermicompost of different substrates,” International Journal of Environmental Science and Engineering Research, vol. 3, no. 2, pp. 32–45, 2012.
[28]  M. A. Sánchez-Monedero, A. Roig, C. Paredes, and M. P. Bernal, “Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures,” Bioresource Technology, vol. 78, no. 3, pp. 301–308, 2001.
[29]  J. C. Ostos, R. López-Garrido, J. M. Murillo, and R. López, “Substitution of peat for municipal solid waste- and sewage sludge-based composts in nursery growing media: effects on growth and nutrition of the native shrub Pistacia lentiscus L.,” Bioresource Technology, vol. 99, no. 6, pp. 1793–1800, 2008.
[30]  H. M. Ribeiro, E. Duarte, and J. Q. Dos Santos, “Municipal solid waste compost as a growing-media component for potted pelargonium (Pelargonium zonale cv. Meridonna),” in >Proceedings of the 9th International Symposium for the Optimization of Plant Nutrition, pp. 499–501, Prague, Czech Republic, 1997.
[31]  P. J. Wuest, H. K. Fahy, and J. Fahy, “Use of spent mushroom substrate (SMS) for corn (maize) production and its effect on surface water quality,” Compost Science & Utilization, vol. 3, no. 1, pp. 46–54, 1995.
[32]  N. Tremblay and M. Senecal, “Nitrogen and potassium in nutrient solution influence seedling growth of four vegetable species,” HortScience, vol. 23, pp. 1018–1020, 1988.
[33]  B. De Lucia, “Response of potted australian ornamental plants to different soil water conditions,” Acta Horticulturae, vol. 807, pp. 277–282, 2009.
[34]  A. M. Stellacci, G. Cristiano, P. Rubino, B. De Lucia, and E. Cazzato, “Nitrogen uptake, nitrogen partitioning and N-use efficiency of container-grown holm oak (Quercus ilex L.) under different nitrogen levels and fertilizer sources,” International Journal of Food, Agriculture & Environment, vol. 11, no. 3-4, pp. 132–137, 2013.
[35]  F. Pinamonti, G. Stringari, and G. Zorzi, “Use of compost in soilless cultivation,” Compost Science and Utilization, vol. 5, no. 2, pp. 38–46, 1997.
[36]  A. Falahi-Adrakani, J. C. Bouwkamp, F. R. Gouin, and R. L. Chaney, “Growth response and mineral uptake of vegetable transplants grown in a composted sewage sludge amended medium. I. Nutrient supplying power of the medium,” Journal of Environmental Horticulture, vol. 5, no. 3, pp. 107–111, 1987.
[37]  J. Pretty and A. Ball, “Agricultural influences on carbon emissions and sequestration: a review of evidence and the emerging trading options,” Occasional Paper 2001-03, Centre for Environment and Society, University of Essex, Essex, UK, 2001.
[38]  C. Rosenzweig and D. Hillel, “Soils and global climate change: challenges and opportunities,” Soil Science, vol. 165, no. 1, pp. 47–56, 2000.
[39]  P. Smith, “Carbon sequestration in croplands: the potential in Europe and the global context,” European Journal of Agronomy, vol. 20, no. 3, pp. 229–236, 2004.
[40]  J. Martínez-Blanco, P. Mu?oz, A. Antón, and J. Rieradevall, “Assessment of tomato Mediterranean production in open-field and standard multi-tunnel greenhouse, with compost or mineral fertilizers, from an agricultural and environmental standpoint,” Journal of Cleaner Production, vol. 19, no. 9-10, pp. 985–997, 2011.
[41]  G. Russo, B. De Lucia, L. Vecchietti, E. Rea, and A. Leone, “Environmental and agronomical analysis of different compost-based peat-free substrates in potted rosemary,” Acta Horticulturae, vol. 891, pp. 265–272, 2011.
[42]  A. Boldrin, K. R. Hartling, M. Laugen, and T. H. Christensen, “Environmental inventory modelling of the use of compost and peat in growth media preparation,” Resources, Conservation and Recycling, vol. 54, no. 12, pp. 1250–1260, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413