全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Continuous Agriculture of Grassland Soils of the Argentine Rolling Pampa on Soil Organic Carbon and Nitrogen

DOI: 10.1155/2013/487865

Full-Text   Cite this paper   Add to My Lib

Abstract:

Long-term soil organic carbon (SOC) and soil organic nitrogen (SON) following cultivation of grassland soils (100/120-year tillage (T) + 20/30-year no tillage (NT)) of the Rolling Pampa were studied calibrating the simple AMG model coupled with the natural 13C abundance measurements issued from long-term experiments and validating it on a data set obtained by a farmer survey and by long-term NT experiments. The multisite survey and NT trials permitted coverage of the history of the 140 years with agriculture. The decrease in SOC and SON storage that occurred during the first twenty years by a loss through biological activity was 27% for SOC and 32% for SON. The calibrated model described the SOC storage evolution very well and permitted an accurate simultaneous estimation of their three parameters. The validated model simulated well SOC and SON evolution. Overall, the results analyzed separately for the T and NT period indicated that the active pool has a rapid turnover (MRT ~9 and 13 years, resp.) which represents 50% of SOC in the native prairie soil and 20% of SOC at equilibrium after NT period. NT implementation on soils with the highest soil organic matter reserves will continue to decrease (17%) for three decades later under current annual addition. 1. Introduction It is well established that grassland soils, particularly Mollisols, originally rich in soil organic matter (SOM), rapidly lose important quantities of carbon (C) and nitrogen (N) after cultivation [1–10]. Long-term cultivation effects on soil organic carbon (SOC) and soil organic nitrogen (SON) provide necessary information to evaluate the sustainability of cropping systems and their effects on the environment. Assessment of SOM is a valuable step towards identifying the overall quality of a soil [11–13]. The agriculture of the Argentine Rolling Pampa consists of a sequence of arable crops for 100 to 120 years followed by two or three decades of cropping under no tillage (NT). Before the 1970s, maize (Zea mays L.), wheat (Triticum aestivum L.), and flax (Linun usitatisinum L.) were alternated with pastures for beef production. Since the 1970s, largely due to economic reasons, there has been an important increase in the area under arable crops, with the cropped area increasing relative to the pasture area at an annual rate of 4% [14]. This resulted in an increase in tillage intensities. Furthermore, soybean was often double cropped with wheat (W/S) in the same year. Fertilizer use was relatively restricted until 1992 (<5?kg?N?ha?1a?o?1) [7, 15–17], and liming is not practiced by

References

[1]  H. Jenny, Factors of Soil Formation: A System of Quantitative Pedology, McGraw Hill, New York, NY, USA, 1941.
[2]  C. A. Campbell, “Soil organic carbon, nitrogen and fertility,” in Soil Organic Matter, M. Schnitzer and S. U. Kahn, Eds., pp. 173–272, Elsevier Scientific Publishing, New York, NY, USA, 1978.
[3]  R. P. Voroney, J. A. Van Veen, and E. A. Paul, “Organic C dynamics in grassland soils. 2. Model validation and simulation of the long-term effects of cultivation and rainfall erosion,” Canadian Journal of Soil Science, vol. 61, no. 2, pp. 211–224, 1981.
[4]  H. Tiessen and J. W. B. Stewart, “Particle-size fractions and their use in studies of soil organic matter. II. Cultivation effects on organic matter composition in size fractions,” Soil Science Society of America Journal, vol. 47, no. 3, pp. 509–514, 1983.
[5]  I. C. Burke, C. M. Yonker, W. J. Parton, C. V. Cole, K. Flach, and D. S. Schimel, “Texture, climate, and cultivation effects on soil organic matter content in US grassland soils,” Soil Science Society of America Journal, vol. 53, no. 3, pp. 800–805, 1989.
[6]  R. A. Bowman, J. D. Reeder, and R. W. Lober, “Changes in soil properties in a central Plains rangeland soil after 3, 20, and 60 years of cultivation,” Soil Science, vol. 150, no. 6, pp. 851–857, 1990.
[7]  A. J. Hall, C. M. Rebella, C. M. Ghersa, and J. P. H. Culot, “Field Crop systems of the pampas,” in Field Crop Ecosystems, C. J. Pearson, Ed., pp. 413–450, Elsevier, 1992.
[8]  W. M. Post and K. C. Kwon, “Soil carbon sequestration and land-use change: processes and potential,” Global Change Biology, vol. 6, no. 3, pp. 317–327, 2000.
[9]  L. K. Mann, “Changes in soil carbon storage after cultivation,” Soil Science, vol. 142, pp. 279–288, 1986.
[10]  K. R. Olson, “Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: issues paper for protocol development,” Geoderma, vol. 195-196, pp. 201–206, 2013.
[11]  E. G. Gregorich, M. R. Carter, D. A. Angers, C. M. Monreal, and B. H. Ellert, “Towards a minimum data set to assess soil organic matter quality in agricultural soils,” Canadian Journal of Soil Science, vol. 74, no. 4, pp. 367–385, 1994.
[12]  D. W. Reeves, “The role of soil organic matter in maintaining soil quality in continuous cropping systems,” Soil and Tillage Research, vol. 43, no. 1-2, pp. 131–167, 1997.
[13]  C. Giacometti, M. S. Demyan, L. Cavani, C. Marzadori, C. Ciavatta, and E. Kandeler, “Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems,” Applied Soil Ecology, vol. 64, pp. 32–48, 2013.
[14]  C. Senigagliesi and M. Ferrari, “Soil and crop responses to alternative tillage practices,” in International Crop Science I, D. R. Buxton, R. Shibles, R. A. Forsberg, et al., Eds., pp. 27–35, Crop Science Society of America, Madison, Wis, USA, 1993.
[15]  M. Sillanp??, Micronutrients and the Nutrient Status of Soils: A global Study, Issue 48, FAO, Roma, Italy, 1982.
[16]  J. J. De Battista, A. E. Andriulo, M. C. Ferrari, and C. Pecorari, “Evaluation of the soils structural condition under various tillage systems in the pampa humeda (Argentina),” in Proceedings of the 13th ISTRO Conference, pp. 99–103, Aalborg, Denmark, July 1994.
[17]  E. F. Viglizzo, F. Lértora, A. J. Pordomingo, J. N. Bernardos, Z. E. Roberto, and H. Del Valle, “Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina,” Agriculture, Ecosystems and Environment, vol. 83, no. 1-2, pp. 65–81, 2001.
[18]  AAPRESID, “Evolución de la superficie en Siembra Directa en Argentina,” Asociación Argentina de Productores de Siembra Directa, 2013, http://www.aapresid.org.ar/wp-content/uploads/2013/02/aapresid.evolucion_superficie_sd_argentina.1977_a_2011.pdf.
[19]  “Sistema integrado de información agropecuaria,” 2013, http://old.siia.gov.ar/index.php/series-por-tema/agricultura.
[20]  R. O. Michelena, C. B. Irurtia, F. A. Vavruska, R. Mon, and A. Pittaluga, “Degradación de suelos en el norte de la región pampeana,” Publicación Técnica 6, Proyecto de Agricultura Conservacionista, INTA, Pergamino, Argentina, 1989.
[21]  S. B. Restovich, A. E. Andriulo, and C. Amendola, “Introduction of cover crops in a soybean-corn rotation: effect on some soil properties,” Ciencia Del Suelo, vol. 29, pp. 61–73, 2011.
[22]  S. B. Restovich, A. E. Andriulo, and S. I. Portela, “Introduction of cover crops in a maize-soybean rotation of the Humid Pampas: effect on nitrogen and water dynamics,” Field Crops Research, vol. 128, pp. 62–70, 2012.
[23]  M. C. Sasal, A. E. Andriulo, and M. A. Taboada, “Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas,” Soil and Tillage Research, vol. 87, no. 1, pp. 9–18, 2006.
[24]  S. I. Portela, A. E. Andriulo, E. G. Jobbágy, and M. C. Sasal, “Water and nitrate exchange between cultivated ecosystems and groundwater in the Rolling Pampas,” Agriculture, Ecosystems and Environment, vol. 134, no. 3-4, pp. 277–286, 2009.
[25]  M. C. Sasal, M. G. Castiglioni, and M. G. Wilson, “Effect of crop sequences on soil properties and runoff on natural-rainfall erosion plots under no tillage,” Soil and Tillage Research, vol. 108, no. 1-2, pp. 24–29, 2010.
[26]  M. L. Darder, M. C. Sasal, M. G. Wilson, A. Andriulo, and A. Paz Gonzales, “Pérdida de nitrógeno en sedimentos por escurrimiento bajo distintas secuencias de cultivo en siembra directa,” in Proceedings of the 4th Congreso sobre Uso y Manejo de Suelo, La Coru?a, Espa?a, July 2010.
[27]  C. A. Campbell, K. E. Bowren, M. Schnitzer, R. P. Zentner, and L. Townley-Smith, “Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem,” Canadian Journal of Soil Science, vol. 71, no. 3, pp. 377–387, 1991.
[28]  P. E. Rasmussen and W. J. Parton, “Long-term effects of residue management in wheat-fallow. I: inputs, yield, and soil organic matter,” Soil Science Society of America Journal, vol. 58, no. 2, pp. 523–530, 1994.
[29]  D. S. Jenkinson, “The turnover of organic carbon and nitrogen in soil,” Philosophical Transactions B, vol. 329, no. 1255, pp. 361–368, 1990.
[30]  C. Pecorari, J. Guérif, and P. Stengel, “Fitolitos en los suelos pampeanos. Influencia sobre las propiedades físicas determinantes de los mecanismos elementales de la evolución de la estructura,” Ciencia Del Suelo, vol. 8, pp. 135–141, 1991.
[31]  F. Bartoli, Le Cycle Biogéochimique du Silicium sur Roche Acide: Application à Deux Ecosystèmes Forestières Tempérés (Vosges) [Thèse de doctorat], Université Nancy, 1981.
[32]  F. Andreux, S. Bruckert, A. Correa, and B. Souchier, “Sur une méthode de fractionnement physique et chimique des agrégats des sols: origines possibles de la matière organique des fractions obtenues,” Comptes Rendus de L'Académie des Sciences, vol. 291, pp. 381–384, 1980.
[33]  J. Boiffin and A. Fleury, “Quelques conséquences agronomiques du retournement des prairies permanentes,” Annales Agronomiques, vol. 4, pp. 555–573, 1974.
[34]  C. A. Cambardella and E. T. Elliot, “Particulate soil organic-matter changes across a grassland cultivation sequence,” Soil Science Society of America Journal, vol. 56, no. 3, pp. 777–783, 1992.
[35]  H. H. Janzen, C. A. Campbell, S. A. Brandt, G. P. Lafond, and L. Townley-Smith, “Light-fraction organic matter in soils from long-term crop rotations,” Soil Science Society of America Journal, vol. 56, no. 6, pp. 1799–1806, 1992.
[36]  D. Arrouays, J. Balesdent, J. C. Germon, P. A. Jayet, J. F. Soussana, and P. Stengel, Stocker du Carbone dans les Sols agricoles de France?Expertise Scientifique Collective, 2002.
[37]  D. A. Angers, “Changes in soil aggregation and organic carbon under corn and alfalfa,” Soil Science Society of America Journal, vol. 56, no. 4, pp. 1244–1249, 1992.
[38]  D. S. Schimel, D. C. Coleman, and K. A. Horton, “Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota,” Geoderma, vol. 36, no. 3-4, pp. 201–214, 1985.
[39]  P. Smith, J. U. Smith, D. S. Powlson et al., “A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments,” Geoderma, vol. 81, no. 1-2, pp. 153–225, 1997.
[40]  J. Guérif, “Modification de la répartition et de l’évolution des matières organiques par la simplification du travail du sol: conséquences sur quelques propriétés physiques,” in Les Rotations Céréalières Intensives. Dix Années D’études Concertées, pp. 63–88, INRA-ONIC-ITCF, Paris, France, 1986.
[41]  A. R. Kemanian and C. O. St?ckle, “C-Farm: a simple model to evaluate the carbon balance of soil profiles,” European Journal of Agronomy, vol. 32, no. 1, pp. 22–29, 2010.
[42]  H. T. Gollany, R. W. Rickman, Y. Liang, S. L. Albrecht, S. Machado, and S. Kang, “Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production,” Agronomy Journal, vol. 103, no. 1, pp. 234–246, 2011.
[43]  A. Andriulo, B. Mary, and J. Guerif, “Modelling soil carbon dynamics with various cropping sequences on the rolling pampas,” Agronomie, vol. 19, no. 5, pp. 365–377, 1999.
[44]  S. Hénin and M. Dupuis, Essai de Bilan de la Matière Organique du Sol, 1945.
[45]  N. Brisson, C. Gary, E. Justes et al., “An overview of the crop model STICS,” European Journal of Agronomy, vol. 18, no. 3-4, pp. 309–332, 2003.
[46]  K. Saffih-Hdadi and B. Mary, “Modeling consequences of straw residues export on soil organic carbon,” Soil Biology and Biochemistry, vol. 40, no. 3, pp. 594–607, 2008.
[47]  J. Boiffin, J. Zaghabi, and M. Sebillote, “Systèmes de culture et statut organique des sols dans le Noyonnais: application du modèle de Hénin-Dupuis,” Agronomie, vol. 6, pp. 437–446, 1986.
[48]  INTA, Instituto Nacional de Tecnología Agropecuaria, “Carta de suelos de la República Argentina,” Hoja 3360-32, Buenos Aires, Argentina, 1972.
[49]  INTA, Instituto Nacional de Tecnología Agropecuaria, “Carta de suelos de la República Argentina,” Hoja 3360-31, Buenos Aires, Argentina, 1974.
[50]  INTA, Instituto Nacional de Tecnología Agropecuaria, “Carta de suelos de la República Argentina,” Hoja 3560-3, Buenos Aires, Argentina, 1974.
[51]  INTA, Instituto Nacional de Tecnología Agropecuaria, “Carta de suelos de la República Argentina,” Hoja 3360-19, Casilda, Santa Fe, Argentina, 1979.
[52]  INTA, Instituto Nacional de Tecnología Agropecuaria, “Carta de suelos de la República Argentina,” Hoja 3360-7 y 8, Totoras y Serodino, Santa Fe, Argentina, 1985.
[53]  INTA, Instituto Nacional de Tecnología Agropecuaria, “Carta de suelos de la República Argentina,” Hoja 3360-13 y 14, Ca?ada de Gómez y Rosario, Santa Fe, Argentina, 1988.
[54]  A. Klute, Methods of Soil Analysis: Physical and Mineralogical Methods, Part 1, SSSA Book Series 5, 2nd edition, 1986.
[55]  W. Burke, D. Gabriela, and J. Bruma, Soil Structure Assessment, A.A. Balkema, Rotterdam, The Netherlands, 1986.
[56]  G. E. Cordone, M. C. Ferrari, J. Ostojic, and G. Planas, “Post-harvest amount, quality and distribution of crop residue in the ‘Pampa Húmeda’ (Argentina),” in Agronomy Abstracts, ASA, CSSA, SSSA Annual Meetings, St. Louis, Mo, USA, 1995.
[57]  M. A. Bolinder, H. H. Janzen, E. G. Gregorich, D. A. Angers, and A. J. VandenBygaart, “An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada,” Agriculture, Ecosystems and Environment, vol. 118, no. 1–4, pp. 29–42, 2007.
[58]  G. A. Piccolo, A. E. Andriulo, and B. Mary, “Changes in soil organic matter under different land management in Misiones province (Argentina),” Scientia Agricola, vol. 65, no. 3, pp. 290–297, 2008.
[59]  C. C. Cerri, C. Feller, J. Balesdent, and A. Plenesassagne, “Application du tra?age isotopique naturel en 13C à l’étude de la dynamique de la matière organique dans les sols,” Comptes Rendus De L'Académie Des Sciences, vol. 300, pp. 423–426, 1985.
[60]  J. Balesdent, A. Mariotti, and B. Guillet, “Natural 13C abundance as a tracer for studies of soil organic matter dynamics,” Soil Biology and Biochemistry, vol. 19, no. 1, pp. 25–30, 1987.
[61]  B. Mary and S. Recous, “Measurement of nitrogen mineralization and inmobilization fluxes in soil as a mean of predicting net mineralization,” European Journal of Agronomy, vol. 3, pp. 291–300, 1994.
[62]  D. R. Huggins, G. A. Buyanovsky, G. H. Wagner et al., “Soil organic C in the tallgrass prairie-derived region of the corn belt: effects of long-term crop management,” Soil and Tillage Research, vol. 47, no. 3-4, pp. 219–234, 1998.
[63]  E. A. Paul, S. J. Morris, R. T. Conant, and A. F. Plante, “Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools?” Soil Science Society of America Journal, vol. 70, no. 3, pp. 1023–1035, 2006.
[64]  A. E. Andriulo, J. A. Galantini, and A. Irizar, “Fuentes de variación de los parámetros intervinientes en balances de carbono edáfico simplificados,” in Proceedings of the 19th Congreso Latinoamericano de la Ciencia del Suelo, 2012.
[65]  B. Mary and R. Wylleman, “Characterization and modelling of organic C and N in soil in different cropping systems,” in Proceedings of the 11th Nitrogen Workshop,, pp. 251–252, Reims, France, 2001.
[66]  D. R. Huggins, R. R. Allmaras, C. E. Clapp, J. A. Lamb, and G. W. Randall, “Corn-soybean sequence and tillage effects on soil carbon dynamics and storage,” Soil Science Society of America Journal, vol. 71, no. 1, pp. 145–154, 2007.
[67]  J. Lehmann and J. Stephen, Biochar for Environmental Management: Science and Technology, Earthscan, London-Sterling, UK, 2009.
[68]  R. Alvarez, “Balance de carbono en los suelos,” 2013, http://agroabona.files.wordpress.com/2011/01/balance-de-carbono-en-los-suelos.pdf.
[69]  L. E. Novelli, O. P. Caviglia, and R. J. M. Melchiori, “Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols,” Geoderma, vol. 167-168, pp. 254–260, 2011.
[70]  B. Mary and J. Guérif, “Interêts et limites des modèles de prévision de l’évolution des matières organiques et de l’azote dans le sol,” Cahiers Agricultures, vol. 3, pp. 247–257, 1994.
[71]  L. Tallarico and R. Caravello, “El suelo en la región triguera argentina,” in Programa de Trigo Y Cebada Cervecera, IDIA/INTA 233-5, pp. 172–181, 1967.
[72]  J. Balesdent, G. H. Wagner, and A. Mariotti, “Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance,” Soil Science Society of America Journal, vol. 52, no. 1, pp. 118–124, 1988.
[73]  R. C. Dalal and R. J. Mayer, “Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. II. Total organic carbon and its rate of loss from the soil profile,” Australian Journal of Soil Research, vol. 24, no. 2, pp. 281–292, 1986.
[74]  J. Keli Zagbahi, Système de culture, système de production et statu organique des sols: essai de diagnostic sur les pratiques d’entretien organique dans une petite région agricole [Thèse de Doctorat], Institut National Agronomique de Paris-Grignon, 1984.
[75]  D. Plénet, E. Lubet, and C. Juste, “Evolution à long terme du statut carbone du sol en monoculture non irriguée du ma?s (Zea mays L.),” Agronomie, vol. 13, pp. 685–698, 1993.
[76]  R. Nieder and D. K. Benbi, Carbon and Nitrogen in the Terrestrial Environment, Springer Science, 2008.
[77]  A. Irizar, A. E. Andriulo, and B. Mary, “Long-term impact of no tillage in two intensified crop rotations on different soil organic matter fractions in Argentine Rolling Pampa,” The Open Agriculture Journal, vol. 7, pp. 22–31, 2013.
[78]  J. Hassink, “Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils,” Biology and Fertility of Soils, vol. 14, no. 2, pp. 126–134, 1992.
[79]  C. A. Cambardella and E. T. Elliott, “Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils,” Soil Science Society of America Journal, vol. 58, no. 1, pp. 123–130, 1994.
[80]  M. H. Beare, M. L. Cabrera, P. F. Hendrix, and D. C. Coleman, “Aggregate-protected and unprotected organic matter pools in conventional- and no-tillage soils,” Soil Science Society of America Journal, vol. 58, no. 3, pp. 787–795, 1994.
[81]  M. Stemmer, M. von Lützow, E. Kandeler, F. Pichlmayer, and M. H. Gerzabek, “The effect of maize straw placement on mineralization of C and N in soil particle size fractions,” European Journal of Soil Science, vol. 50, no. 1, pp. 73–85, 1999.
[82]  A. Chesson, “Plant degradation by rumiants: parallels with litter decomposition in soils,” in Driven By Nature: Plant Litter Quality and Decomposition, G. Cadisch and K. E. Giller, Eds., pp. 47–66, CAB International, 1997.
[83]  M. A. Bortolato, A. E. Andriulo, D. Colombini, F. Villalba, and L. Hanuch, “Aporte de nitrógeno al suelo de las hojas del cultivo de soja,” in Proceedings of the 22nd Congreso Argentino de la Ciencia del Suelo, Rosario, Argentina, May 2010.
[84]  M. H. Beare, B. R. Pohlad, D. H. Wright, and D. C. Coleman, “Residue placement and fungicide effects on fungal communities in conventional and no-tillage soils,” Soil Science Society of America Journal, vol. 57, no. 2, pp. 392–399, 1993.
[85]  C. Caride, G. Pi?eiro, and J. M. Paruelo, “How does agricultural management modify ecosystem services in the argentine Pampas? The effects on soil C dynamics,” Agriculture, Ecosystems and Environment, vol. 154, pp. 23–33, 2012.
[86]  P. Bertuzzi, E. Justes, C. Les Bas, B. Mary, and V. Souchère, “Effets des cultures intermédiaires sur l’érosion, les propriétés physiques du sol et le bilan carbone,” in Réduire les fuites de nitrate au moyen de cultures intermédiaire: Conséquences sur les bilans d’eau et d’azote, autres services écosystémiques, chapter 5, pp. 1–28, 2012.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133