全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Biochar in Ameliorating Disturbed Soils and Sequestering Soil Carbon in Tropical Agricultural Production Systems

DOI: 10.1155/2013/354965

Full-Text   Cite this paper   Add to My Lib

Abstract:

Agricultural soils in the tropics have undergone significant declines in their native carbon stock through the long-term use of extractive farming practices. However, these soils have significant capacity to sequester CO2 through the implementation of improved land management practices. This paper reviews the published and grey literature related to the influence of improved land management practices on soil carbon stock in the tropics. The review suggests that the implementation of improved land management practices such as crop rotation, no-till, cover crops, mulches, compost, or manure can be effective in enhancing soil organic carbon pool and agricultural productivity in the tropics. The benefits of such amendments were, however, often short-lived, and the added organic matters were usually mineralized to CO2 within a few cropping seasons leading to large-scale leakage. We found that management of black carbon (C), increasingly referred to as biochar, may overcome some of those limitations and provide an additional soil management option. Under present circumstances, recommended crop and land management practices are inappropriate for the vast majority of resource constrained smallholder farmers and farming systems. We argue that expanding the use of biochar in agricultural lands would be important for sequestering atmospheric CO2 and mitigating climate change, while implementing the recommended crop and land management practices in selected areas where the smallholder farmers are not resource constrained. 1. Introduction Evidence from the Intergovernmental Panel on Climate Change [1] is now overwhelmingly convincing that climate change is real, that it will intensify, and that the poorest and most vulnerable will be disproportionately affected by these changes. Climate change and variability, drought, and other climate-related extremes have a direct influence on the quantity and quality of agricultural production and, in many cases, adversely affect it. In particular, the influences of climate change on agricultural production are severe in developing countries because the technology generation, innovation, and adoption are too slow to counteract the adverse effects of varying and changing environmental conditions [2]. Agricultural intensification invariably has several negative impacts on the environment [3]. One of the major consequences of agricultural intensification is a transfer of carbon (C) to the atmosphere in the form of carbon dioxide (CO2), thereby reducing ecosystem C pools. Agriculture contributes 10–12% of the total global

References

[1]  IPCC, “Climate change 2007: mitigation,” in Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, and L. A. Meyer, Eds., p. 30, Cambridge University Press, Cambridge, UK, 2007.
[2]  M. J. Salinger, M. V. K. Sivakumar, and R. Motha, “Reducing vulnerability of agriculture and forestry to climate variability and change: workshop summary and recommendations,” Climatic Change, vol. 70, no. 1-2, pp. 341–362, 2005.
[3]  C. E. P. Cerri, G. Sparovek, M. Bernoux, W. E. Easterling, J. M. Melillo, and C. C. Cerri, “Tropical agriculture and global warming: impacts and mitigation options,” Scientia Agricola, vol. 64, no. 1, pp. 83–99, 2007.
[4]  S. Jaiaree, A. Chidthaisong, and N. Tangtham, “Soil carbon dynamics and net carbon dioxide fluxes in tropical forest and corn plantation system,” in Proceedings of the 2nd Joint International Conference on Sustainable Energy and Environment (SEE '06), Bangkok, Thailand, November 2006.
[5]  P. Smith, D. Martino, Z. Cai et al., “Greenhouse gas mitigation in agriculture,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1492, pp. 789–813, 2008.
[6]  S. M. Ogle, F. J. Breidt, and K. Paustian, “Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions,” Biogeochemistry, vol. 72, no. 1, pp. 87–121, 2005.
[7]  J. M.-F. Johnson, A. J. Franzluebbers, S. L. Weyers, and D. C. Reicosky, “Agricultural opportunities to mitigate greenhouse gas emissions,” Environmental Pollution, vol. 150, no. 1, pp. 107–124, 2007.
[8]  FAO, Enabling Agriculture to Contribute to Climate Change Mitigation, The Food and Agriculture Organization of the United Nations, Rome, Italy, 2010.
[9]  FAO, “Agriculture and environmental challenges of the twenty-first century: a strategic approach for FAO,” Tech. Rep. COAG/2009/3, 11, FAO, Rome, Italy, 2009.
[10]  A. S. Grandy and G. P. Robertson, “Land-use intensity effects on soil organic carbon accumulation rates and mechanisms,” Ecosystems, vol. 10, no. 1, pp. 58–73, 2007.
[11]  E. Boserup, The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure, G. Allen and Unwin, London, UK, 1965.
[12]  C. L. A. Asadu, F. I. Nweke, and A. A. Enete, “Soil properties and intensification of traditional farming systems in Sub Saharan Africa (SSA),” Journal of Tropical Agriculture, Food, Environment and Extension, vol. 7, pp. 186–192, 2008.
[13]  K. Vielhauer, T. D. A. Sa, and M. Denich, “Modification of a traditional crop-fallow system towards ecologically and economically sound options in the eastern Amazon,” in Proceedings of the German-Brazilian Workshop on Neotropical Ecosystems—Achievements and Prospects of Cooperative Research, Hamburg, Germany, September 2000.
[14]  S. G. Perz, “Household demographic factors as life cycle determinants of land use in the Amazon,” Population Research and Policy Review, vol. 20, no. 3, pp. 159–186, 2001.
[15]  M. J. Kipsat, P. M. Anangweso, M. K. Korir, A. K. Serem, H. K. Maritim, and B. J. Kanule, “Factors affecting farmers’decisions to abandon soil conservation once external support cease: the case of Kericho District, Kenya,” African Crop Science Conference Proceeding, vol. 8, pp. 1377–1381, 2007.
[16]  S. Holden and H. Yohannes, “Land redistribution, tenure insecurity, and intensity of production: a study of farm households in Southern Ethiopia,” Land Economics, vol. 78, no. 4, pp. 573–590, 2002.
[17]  P. Ebanyat, N. de Ridder, A. de Jager, R. J. Delve, M. A. Bekunda, and K. E. Giller, “Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda,” Population and Environment, vol. 31, no. 6, pp. 474–506, 2010.
[18]  R. Lal, “Soil carbon sequestration impacts on global climate change and food security,” Science, vol. 304, no. 5677, pp. 1623–1627, 2004.
[19]  A. Bationo, J. Kihara, B. Vanlauwe, B. Waswa, and J. Kimetu, “Soil organic carbon dynamics, functions and management in West African agro-ecosystems,” Agricultural Systems, vol. 94, no. 1, pp. 13–25, 2007.
[20]  P.-A. Jacinthe, R. Lal, and J. M. Kimble, “Carbon dioxide evolution in runoff from simulated rainfall on long-term no-till and plowed soils in southwestern Ohio,” Soil and Tillage Research, vol. 66, no. 1, pp. 23–33, 2002.
[21]  Y. Abera and T. Belachew, “Effects of landuse on soil organic carbon and nitrogen in soils of bale, Southeastern Ethiopia,” Tropical and Subtropical Agroecosystems, vol. 14, no. 1, pp. 229–235, 2011.
[22]  B. Q. Parker, B. A. Osei, F. A. Armah, and D. O. Yawson, “Impact of biomass burning on soil organic carbon and the release of carbon dioxide into the atmosphere in the coastal savanna ecosystem of Ghana,” Journal of Renewable and Sustainable Energy, vol. 2, no. 3, Article ID 033106, 2010.
[23]  K. G. Mandal, A. K. Misra, K. M. Hati, K. K. Bandyopadhyay, P. K. Ghosh, and M. Mohanty, “Rice residue-management options and effects on soil properties and crop productivity,” Food, Agriculture & Environment, vol. 2, pp. 224–231, 2004.
[24]  V. Smil, “Crop residues: agriculture's largest harvest,” BioScience, vol. 49, no. 4, pp. 299–308, 1999.
[25]  S. M. Nandwa, “Soil organic carbon (SOC) management for sustainable productivity of cropping and agro-forestry systems in Eastern and Southern Africa,” Nutrient Cycling in Agroecosystems, vol. 61, no. 1-2, pp. 143–158, 2001.
[26]  S. P. Sohi and S. Shackley, “Biochar: carbon sequestration potential,” December 2009, Copenhagen, Denmark.
[27]  A. Woodfine, “Using sustainable land management practices to adapt to and mitigate climate change in sub-saharan Africa,” 2009, Resource guide version 1. 0. TERR AFRICA, http://www.terrafrica.org/.
[28]  P. K. R. Nair, V. D. Nair, E. F. Gama-Rodrigues, et al., “Soil carbon in agro forestry systems: an unexplored treasure,” Nature Proceedings. In press.
[29]  K. Banger, G. S. Toor, A. Biswas, S. S. Sidhu, and K. Sudhir, “Soil organic carbon fractions after 16-years of applications of fertilizers and organic manure in a Typic Rhodalfs in semiarid tropics,” Nutrient Cycling in Agroecosystems, vol. 86, no. 3, pp. 391–399, 2010.
[30]  L. Batlle-Bayer, N. H. Batjes, and P. S. Bindraban, “Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review,” Agriculture, Ecosystems and Environment, vol. 137, no. 1-2, pp. 47–58, 2010.
[31]  J. Fallahzade and M. A. Hajabbasi, “The effects of irrigation and cultivation on the quality of desert soil in central Iran,” Land Degradation and Development, vol. 23, no. 1, pp. 53–61, 2012.
[32]  M. Shafi, J. Bakht, A. Attaullah, and M. A. Khan, “Effect of crop sequence and crop residues on soil C, soil N and yield of maize,” Pakistan Journal of Botany, vol. 42, no. 3, pp. 1651–1664, 2010.
[33]  Q. Wang, Y. Li, and A. Alva, “Cropping systems to improve carbon sequestration for mitigation of climate change,” Journal of Environmental Protection, vol. 1, pp. 207–215, 2010.
[34]  S. A. Bangroo, N. K. Kirmani, T. Ali, M. A. Wani, M. A. Bhat, and M. I. Bhat, “Adapting agriculture for enhancing ecoefficiency through soil carbon sequestration in agro-ecosystem,” Research Journal of Agricultural Sciences, vol. 2, pp. 164–169, 2011.
[35]  D. N. Pandey, “Carbon sequestration in agroforestry systems,” Climate Policy, vol. 2, no. 4, pp. 367–377, 2002.
[36]  A. A. Kimaro, V. R. Timmer, A. G. Mugasha, S. A. O. Chamshama, and D. A. Kimaro, “Nutrient use efficiency and biomass production of tree species for rotational woodlot systems in semi-arid Morogoro, Tanzania,” Agroforestry Systems, vol. 71, no. 3, pp. 175–184, 2007.
[37]  P. K. R. Nair, “The coming of age of agroforestry,” Journal of the Science of Food and Agriculture, vol. 87, no. 9, pp. 1613–1619, 2007.
[38]  K. E. Giller, E. Witter, M. Corbeels, and P. Tittonell, “Conservation agriculture and smallholder farming in Africa: the heretics' view,” Field Crops Research, vol. 114, no. 1, pp. 23–34, 2009.
[39]  P. A. Sanchez, “Linking climate change research with food security and poverty reduction in the tropics,” Agriculture, Ecosystems and Environment, vol. 82, no. 1–3, pp. 371–383, 2000.
[40]  D. Suprayogo, K. Hairiah, M. V. Noordwijk, and G. Cadisch, “Agroforestry interactions in rainfed agriculture: can hedgerow intercropping systems sustain crop yield on an ultisol in lampung (Indonesia)?” Agrivita, vol. 32, no. 3, 2010.
[41]  F. M. Kihanda, G. P. Warren, and A. N. Micheni, “Effect of manure application on crop yield and soil chemical properties in a long-term field trial of semi-arid Kenya,” Nutrient Cycling in Agroecosystems, vol. 76, no. 2-3, pp. 341–354, 2006.
[42]  K. Bracmort, “Biochar: examination of an emerging concept to mitigate climate change,” CRS Report for Congress, United States Congressional Research Service, 2010.
[43]  I. F. Odesola and T. A. Owoseni, “Development of local technology for a small-scale biochar production processes from agricultural wastes,” Journal of Emerging Trends in Engineering and Applied Sciences, vol. 1, no. 2, pp. 205–208, 2010.
[44]  J. Lehmann, “A handful of carbon,” Nature, vol. 447, no. 7141, pp. 143–144, 2007.
[45]  J. Lehmann, J. P. da Silva Jr., M. Rondon et al., “Slash-and-char—a feasible alternative for soil fertility management in the central Amazon?” in Proceedings of the 17th World Congress of Soil Science, CD-ROM Paper no. 449, pp. 1–12, Bangkok, Thailand, 2002.
[46]  J. Lehmann, J. Gaunt, and M. Rondon, “Bio-char sequestration in terrestrial ecosystems—a review,” Mitigation and Adaptation Strategies for Global Change, vol. 11, no. 2, pp. 403–427, 2006.
[47]  P. J. Reumerman and B. Frederiks, “Charcoal production with reduced emissions,” in Proceedings of the 12th European Conference on Biomass for Energy, Industry and Climate Protection, Amsterdam, The Netherlands, 2002.
[48]  D. A. Laird, “The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality,” Agronomy Journal, vol. 100, no. 1, pp. 178–181, 2008.
[49]  D. A. Laird, R. C. Brown, J. E. Amonette, and J. Lehmann, “Review of the pyrolysis platform for coproducing bio-oil and biochar,” Biofuels, Bioproducts and Biorefining, vol. 3, no. 5, pp. 547–562, 2009.
[50]  J. M. Novak, W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts, and M. A. S. Niandou, “Impact of biochar amendment on fertility of a southeastern coastal plain soil,” Soil Science, vol. 174, no. 2, pp. 105–112, 2009.
[51]  P. Brookes, L. Yu, M. Durenkam, and Q. Lin, “Effects of biochar on soil chemical and biological properties in high and low pH soils,” in Proceedings of the International Symposium on Environmental Behavior and Effects of Biomass-Derived Charcoal, China Agricultural University, Beijing, China, October 2010.
[52]  M. Leach, J. Fairhead, J. Fraser, and E. Lehner, “Biocharred pathways to sustainability? Triple wins, livelihoods and the politics of technological promise,” STEPS Working Paper 41, STEPS Centre, Brighton, UK, 2010.
[53]  A. Harley, “Biochar for reclamation,” in The Role of Biochar in the Carbon Dynamics in Drastically Disturbed Soils. US-Focused Biochar Report, US Biochar Initiative, 2010.
[54]  S. M. Haefele, Y. Konboon, W. Wongboon et al., “Effects and fate of biochar from rice residues in rice-based systems,” Field Crops Research, vol. 121, no. 3, pp. 430–440, 2011.
[55]  A. Nigussie, E. Kissi, M. Misganaw, and G. Ambaw, “Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils,” American-Eurasian Journal of Agricultural & Environmental Science, vol. 12, pp. 369–376, 2012.
[56]  A. Hardie and A. Botha, Biochar Amendment of Infertile Western Cape Sandy Soil: Implications for Food Security, Stellenbosch University, Stellenbosch, South Africa.
[57]  S. Shenbagavalli and S. Mahimairaja, “Characterization and effect of biochar on nitrogen and carbon dynamics in soil,” International Journal of Advanced Biological Research, vol. 2, pp. 249–255, 2012.
[58]  C. S?derberg, Effects of biochar amendment in soils from Kisumu, Kenya [Degree project in Biology, SLU], Swedish University of Agricultural Sciences, Faculty of Natural Resources and Agricultural Sciences, Department of Soil and Environment, Uppsala, Sweden, 2013.
[59]  S. Sohi, E. Lopez-Capel, E. Krull, and R. Bol, “Biochar, climate change and soil: a review to guide future research,” CSIRO Land and Water Science Report 05/09, CSIRO, Highett, Australia, 2009.
[60]  J. W. Gaskin, C. Steiner, K. Harris, K. C. Das, and B. Bibens, “Effect of low-temperature pyrolysis conditions on biochar for agricultural use,” Transactions of the ASABE, vol. 51, no. 6, pp. 2061–2069, 2008.
[61]  J. M. Novak, I. Lima, B. Xing, et al., “Characterization of designer biochar produced at different temperatures and their effects on a loamy sand,” Annals of Environmental Science, vol. 3, pp. 195–206, 2009.
[62]  B. Barthès, A. Azontonde, E. Blanchart et al., “Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin,” Soil Use and Management, vol. 20, pp. 231–239, 2004.
[63]  C. Cheng, J. Lehmann, J. E. Thies, S. D. Burton, and M. H. Engelhard, “Oxidation of black carbon by biotic and abiotic processes,” Organic Geochemistry, vol. 37, no. 11, pp. 1477–1488, 2008.
[64]  J. Lehmann, “Biological carbon sequestration must and can be a win-win approach,” Climatic Change, vol. 97, no. 3, pp. 459–463, 2009.
[65]  B. Glaser, J. Lehmann, C. Steiner, T. Nehls, M. Yousaf, and W. Zech, “Potential of pyrolyzed organic matter in soil amelioration,” in Proceedings of the 12th ISCO Conference, Beijing, China, 2002.
[66]  D. Woolf, J. E. Amonette, F. A. Street-Perrott, J. Lehmann, and S. Joseph, “Sustainable biochar to mitigate global climate change,” Nature Communications, vol. 1, no. 5, article 56, 2010.
[67]  J. Gaunt and J. Lehmann, “Prospects for carbon trading based in the reductions of greenhouse gas emissions arising from the use of biochar,” in Proceedings of the International Agrichar Initiative Conference (IAI '07), p. 20, Terrigal, Australia, April 2007.
[68]  J. L. Gaunt and J. Lehmann, “Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production,” Environmental Science and Technology, vol. 42, no. 11, pp. 4152–4158, 2008.
[69]  N. Ramankutty, A. T. Evan, C. Monfreda, and J. A. Foley, “Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000,” Global Biogeochemical Cycles, vol. 22, no. 1, Article ID GB1003, 2008.
[70]  R. Lal, “Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands,” Land Degradation and Development, vol. 17, no. 2, pp. 197–209, 2006.
[71]  R. Lal, “Challenges and opportunities in soil organic matter research,” European Journal of Soil Science, vol. 60, no. 2, pp. 158–169, 2009.
[72]  FAO, Managing Soil Carbon to Mitigate Climate Change: A Sound Investment in Ecosystem Services, a Framework for Action, Food and Agriculture Organization of the United Nations Conservation Technology Information Center, Rome, Italy, 2008.
[73]  J. O. Niles, S. Brown, J. Pretty, A. S. Ball, and J. Fay, “Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands,” Philosophical Transactions of the Royal Society A, vol. 360, no. 1797, pp. 1621–1639, 2002.
[74]  K. P. C. Rao, L. V. Verchot, and J. Laarman, “Adaptation to climate change through sustainable management and development of agroforestry systems,” ICRISAT, vol. 4, no. 1, pp. 1–30, 2007.
[75]  C. Steiner, “Biochar in agricultural and forestry applications,” in Biochar from Agricultural and Forestry Residues—a Complimentary Use of “Waste” Biomass. Assessment of Biochar’s Benefits for the United States of America, US Biochar Initiative, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413