全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Crop Residue Biomass Effects on Agricultural Runoff

DOI: 10.1155/2013/805206

Full-Text   Cite this paper   Add to My Lib

Abstract:

High residue loads associated with conservation tillage and cover cropping may impede water flow in furrow irrigation and thus decrease the efficiency of water delivery and runoff water quality. In this study, the biomass residue effects on infiltration, runoff, and export of total suspended solids (TSS), dissolved organic carbon (DOC), sediment-associated carbon (TSS-C), and other undesirable constituents such as phosphate (soluble P), nitrate ( ), and ammonium ( ) in runoff water from a furrow-irrigated field were studied. Furrow irrigation experiments were conducted in 91 and 274?m long fields, in which the amount of residue in the furrows varied among four treatments. The biomass residue in the furrows increased infiltration, and this affected total load of DOC, TSS, and TSS-C. Net storage of DOC took place in the long but not in the short field because most of the applied water ran off in the short field. Increasing field length decreased TSS and TSS-C losses. Total load of , , and soluble P decreased with increasing distance from the inflow due to infiltration. The concentration and load of P increased with increasing residue biomass in furrows, but no particular trend was observed for and . Overall, the constituents in the runoff decreased with increasing surface cover and field length. 1. Introduction The USA, having more than 408 million acres of crop land and an abundant supply of food products, is noted worldwide for its high productivity, quality and efficiency in delivering goods to the consumer [1]. However, the agricultural practices used to produce these quality products are affecting the sustainability of crop production systems and impacting water quality in many regions of the country. Agriculture is the third leading source of pollution in USA estuaries [2]. Specifically, elevated dissolved organic carbon (DOC) concentrations in runoff that finds its way to main drinking water supplies are of significant concern because of serious potential health concerns. During chlorination to produce drinking water, a subgroup of DOC, or disinfection byproduct precursors, form disinfection byproducts (DBPs), of which trihalomethanes and haloacetic acids are the most abundant. These DBPs, stringently regulated by the USEPA, are carcinogenic and mutagenic. Therefore, knowledge of water quality parameters such as nutrients, sediments, and bacterial concentrations of flooded fields is important, because the water released from these fields eventually flows into streams and rivers. One of the important methods of controlling pollution by agricultural

References

[1]  N. Cynthia, R. Ebel A Borchers, and F. Carriazo, “Major uses of land in the United States—2007,” Economic Information Bulletin EIB-89, USDA, 2011.
[2]  US Environmental Protection Agency (USEPA), National water quality inventory: 2000 report to congress. EPA841-R-02-001. Office of Water, August, 2002.
[3]  R. J. Godwin, Agricultural Engineering in Development: Tillage for Crop Production in Areas of Low Rainfall, FAO, Rome, Italy, 1990.
[4]  K. N. Potter, H. A. Torbert, and J. E. Morrison Jr., “Tillage and residue effects on infiltration and sediment losses on vertisols,” Transactions of the American Society of Agricultural Engineers, vol. 38, no. 5, pp. 1413–1419, 1995.
[5]  J. E. Gilley, “Tillage effects on infiltration, surface storage, and overland flow,” in Soil, Water Conservation Society, Farming for a Better Environment, pp. 46–47, Ankeny, Iowa, USA, 1995.
[6]  D. McGarry, B. J. Bridge, and B. J. Radford, “Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics,” Soil and Tillage Research, vol. 53, no. 2, pp. 105–115, 2000.
[7]  J. Guérif, G. Richard, C. Dürr, J. M. Machet, S. Recous, and J. Roger-Estrade, “A review of tillage effects on crop residue management, seedbed conditions and seedling establishment,” Soil and Tillage Research, vol. 61, no. 1-2, pp. 13–32, 2001.
[8]  D. R. Mailapalli, W. W. Wallender, M. Burger, and W. R. Horwath, “Effects of field length and management practices on dissolved organic carbon export in furrow irrigation,” Agricultural Water Management, vol. 98, no. 1, pp. 29–37, 2010.
[9]  CTIC (Conservation Tillage Information Center), Crop Residue Management Executive Summary, Conservation Technology Information Center, West Lafayette, Ind, USA, 1998.
[10]  P. W. Unger, B. A. Stewart, J. F. Parr, and R. P. Singh, “Crop residue management and tillage methods for conserving soil and water in semi-arid regions,” Soil and Tillage Research, vol. 20, no. 2–4, pp. 219–240, 1991.
[11]  R. L. Blevins and W. W. Frye, “Conservation Tillage: an ecological approach to soil management,” Advances in Agronomy, vol. 51, pp. 33–78, 1993.
[12]  S. F. Wright, J. L. Starr, and I. C. Paltineanu, “Changes in aggregate stability and concentration of glomalin during tillage management transition,” Soil Science Society of America Journal, vol. 63, no. 6, pp. 1825–1829, 1999.
[13]  M. J. Brown, “Effect of grain straw and furrow irrigation stream size on soil erosion and infiltration,” Journal of Soil & Water Conservation, vol. 40, no. 4, pp. 389–391, 1985.
[14]  M. J. Brown and W. D. Kemper, “Using straw in steep furrows to reduce soil erosion and increase dry bean yields,” Journal of Soil and Water Conservation, vol. 42, no. 3, pp. 187–191, 1987.
[15]  R. D. Berg, “Straw residue to control furrow erosion on sloping, irrigated cropland,” Journal of Soil & Water Conservation, vol. 39, no. 1, pp. 58–60, 1984.
[16]  D. E. Smika and P. W. Unger, “Effect of surface residues on soil water storage,” Advances in Soil Science, vol. 5, pp. 111–138, 1986.
[17]  T. M. McCalla and T. J. Army, “Stubble mulch farming,” Advances in Agronomy, vol. 13, pp. 125–196, 1961.
[18]  J. J. Bond and W. O. Willis, “Soil water evaporation: long-term drying as influenced by surface residue and evaporation potential,” Soil Science Society America Journal, vol. 35, pp. 984–987, 1971.
[19]  S. D. Logsdon and T. C. Kaspar, “Tillage influences as measured by ponded and tension infiltration,” Journal of Soil and Water Conservation, vol. 50, no. 5, pp. 571–575, 1995.
[20]  M. A. Arshad, A. J. Franzluebbers, and R. H. Azooz, “Components of surface soil structure under conventional and no-tillage in northwestern Canada,” Soil and Tillage Research, vol. 53, no. 1, pp. 41–47, 1999.
[21]  B. C. Ball, M. V. Cheshire, E. A. G. Robertson, and E. A. Hunter, “Carbohydrate composition in relation to structural stability, compactibility and plasticity of two soils in a long-term experiment,” Soil and Tillage Research, vol. 39, no. 3-4, pp. 143–160, 1996.
[22]  W. J. Gale, C. A. Cambardella, and T. B. Bailey, “Root-derived carbon and the formation and stabilization of aggregates,” Soil Science Society of America Journal, vol. 64, no. 1, pp. 201–207, 2000.
[23]  H. Bossuyt, K. Denef, J. Six, S. D. Frey, R. Merckx, and K. Paustian, “Influence of microbial populations and residue quality on aggregate stability,” Applied Soil Ecology, vol. 16, no. 3, pp. 195–208, 2001.
[24]  F. Ghidey and E. E. Alberts, “Residue type and placement effects on decomposition: field study and model evaluation,” Transactions of the American Society of Agricultural Engineers, vol. 36, no. 6, pp. 1611–1617, 1993.
[25]  B. Singh, D. S. Chanasyk, W. B. McGill, and M. P. K. Nyborg, “Residue and tillage management effects on soil properties of a typic cryoboroll under continuous barley,” Soil and Tillage Research, vol. 32, no. 2-3, pp. 117–133, 1994.
[26]  A. J. Franzluebbers, “Water infiltration and soil structure related to organic matter and its stratification with depth,” Soil and Tillage Research, vol. 66, no. 2, pp. 197–205, 2002.
[27]  C. A. Campbell, V. O. Biederbeck, G. Wen, R. P. Zentner, J. Schoenau, and D. Hahn, “Seasonal trends in selected soil biochemical attributes: effects of crop rotation in the semiarid prairie,” Canadian Journal of Soil Science, vol. 79, no. 1, pp. 73–84, 1999.
[28]  C. A. Campbell, G. P. Lafond, V. O. Biederbeck, G. Wen, J. Schoenau, and D. Hahn, “Seasonal trends in soil biochemical attributes: effects of crop management on a Black Chernozem,” Canadian Journal of Soil Science, vol. 79, no. 1, pp. 85–97, 1999.
[29]  J. C. Franchini, F. J. Gonzalez-Vila, F. Cabrera, M. Miyazawa, and M. A. Pavan, “Rapid transformations of plant water-soluble organic compounds in relation to cation mobilization in an acid Oxisol,” Plant and Soil, vol. 231, no. 1, pp. 55–63, 2001.
[30]  C. S. Dominy and R. J. Haynes, “Influence of agricultural land management on organic matter content, microbial activity and aggregate stability in the profiles of two oxisols,” Biology and Fertility of Soils, vol. 36, pp. 298–305, 2002.
[31]  H. Kok and J. Thien, “Crop residue conservation and tillage management software,” Journal of Soil Water Conservation, vol. 49, pp. 551–553, 1994.
[32]  D. E. Stott, L. F. Elliott, R. I. Papendick, and G. S. Campbell, “Low temperature or low water effects on microbial decomposition of wheat residue,” Soil Biology and Biochemistry, vol. 18, no. 6, pp. 577–582, 1986.
[33]  M. M. Roper, “Straw decomposition and nitrogenase activity (C2H2 reduction): effects of soil moisture and temperature,” Soil Biology and Biochemistry, vol. 17, no. 1, pp. 65–71, 1985.
[34]  H. H. Schomberg, J. L. Steiner, and P. W. Unger, “Decomposition and nitrogen dynamics of crop residues: residue quality and water effects,” Soil Science Society of America Journal, vol. 58, no. 2, pp. 372–381, 1994.
[35]  P. L. Brown and D. D. Dickey, “Losses of wheat straw residue under simulated field conditions,” Soil Science Society America Journal, vol. 34, no. 1, pp. 118–121, 1970.
[36]  C. L. Douglas, R. R. Allmaras Jr., P. E. Rasmussen, R. E. Ramig, and N. C. Roager Jr., “Wheat straw composition and placement effects on decomposition in dryland agriculture of the Pacific Northwest,” Soil Science Society America Journal, vol. 44, no. 4, pp. 833–837, 1980.
[37]  V. Gaillard, C. Chenu, and S. Recous, “Carbon mineralisation in soil adjacent to plant residues of contrasting biochemical quality,” Soil Biology and Biochemistry, vol. 35, no. 1, pp. 93–99, 2003.
[38]  C. Poll, J. Ingwersen, M. Stemmer, M. H. Gerzabek, and E. Kandeler, “Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere,” European Journal of Soil Science, vol. 57, no. 4, pp. 583–595, 2006.
[39]  J. L. Steinera, H. H. Schomberga, P. W. Ungerb, and J. Cresapb, “Crop residue decomposition in no-tillage small-grain fields,” Soil Science Society of America Journal, vol. 63, no. 6, pp. 1817–1824, 1999.
[40]  D. R. Mailapalli, N. S. Raghuwanshi, R. Singh, G. H. Schmitz, and F. Lennartz, “Spatial and temporal variation of manning's roughness coefficient in furrow irrigation,” Journal of Irrigation and Drainage Engineering, vol. 134, no. 2, pp. 185–192, 2008.
[41]  APHA (American Public Health Association), “Method 5310-C,” in Standard Methods For the Examination of Water and wasteWater, 20th edition, 1998.
[42]  J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Analytica Chimica Acta, vol. 27, pp. 31–36, 1962.
[43]  J. C. Forster, “Soil nitrogen,” in Methods in Applied Soil Microbiology and Biochemistry, K. Alef and P. Nannipieri, Eds., pp. 79–87, Academic Press, San Diego, Calif, USA, 1995.
[44]  T. A. Doane and W. R. Horwáth, “Spectrophotometric determination of nitrate with a single reagent,” Analytical Letters, vol. 36, no. 12, pp. 2713–2722, 2003.
[45]  R. M. Poch, J. W. Hopmans, J. W. Six, D. E. Rolston, and J. L. McIntyre, “Considerations of a field-scale soil carbon budget for furrow irrigation,” Agriculture, Ecosystems and Environment, vol. 113, no. 1–4, pp. 391–398, 2006.
[46]  A. P. King, K. J. Evatt, J. Six, R. M. Poch, D. E. Rolston, and J. W. Hopmans, “Annual carbon and nitrogen loadings for a furrow-irrigated field,” Agricultural Water Management, vol. 96, no. 6, pp. 925–930, 2009.
[47]  D. R. Mailapalli, W. R. Horwath, W. W. Wallender, and M. Burger, “Infiltration, runoff, and export of dissolved organic carbon from furrow-irrigated forage fields under cover crop and no-till management in the arid climate of california,” Journal of Irrigation and Drainage Engineering, vol. 138, no. 1, pp. 35–42, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413