Soil quality assessment is valuable for evaluating agroecosystem sustainability, soil degradation, and identifying sustainable land management practices. This study compared soil quality within culturally protected forest areas and adjacent grassland, grazing land, and farmland in Abo-Wonsho, Southern Ethiopia. A total of 40 soil samples (4 land uses × 5 replications × 2 soil depth layers: 0 to 10?cm and 10 to 20?cm) were collected for analysis. Soil textural fractions (i.e., sand, silt, and clay percentage) varied with land use and soil depths even though the textural class across all land use types was sandy loam. Bulk density, soil organic carbon (SOC), and available potassium (K) varied significantly: , , and , respectively, with land use and soil depth, but other indicators showed no significant difference. We conclude soil quality can be protected and maintained by improving existing land use practices within both agricultural and modern forest management areas. 1. Introduction Soil quality can be defined as “the capacity of a specific kind of soil to function within natural or managed ecosystem boundaries to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation” [1]. It is usually considered to have three main aspects reflecting physical, chemical, and biological soil properties and is important for assessment of land degradation and for identification of sustainable land use practices [2, 3]. The main consequences of inappropriate land use changes are land degradation and soil quality deterioration through loss of vegetative cover, top soil moisture, infiltration capacity, water storage, soil organic matter, fertility, resilience, natural regeneration capacity, and a lower water table, factors that are critical for soil health [4]. Recent reports on land use and land management effects on soil quality have been documented particularly in relation to soil degradation and restoration in north west Thailand [5], visitors activities and management on the surface soil [6] and effect of long term cultivation [7] in Turkey, and the influence of agricultural management systems on soil biological quality in Spain [8]. Land use and management are influencing not only soil properties but also soil erosion processes. While unsuitable agricultural practices can cause soil erosion, on the contrary use of cover can reduce risk of erosion [9, 10]. There is also a growing interest in understanding and integrating local knowledge into natural resource management studies [11]. Local Indigenous
References
[1]
D. L. Karlen, M. J. Mausbach, J. W. Doran, R. G. Cline, R. F. Harris, and G. E. Schuman, “Soil quality: a concept, definition, and framework for evaluation,” Soil Science Society of America Journal, vol. 61, no. 1, pp. 4–10, 1997.
[2]
A. R. Dexter, “Soil physical quality—part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth,” Geoderma, vol. 120, no. 3-4, pp. 201–214, 2004.
[3]
M. J. Singh Dr. and K. L. Khera, “Physical indicators of soil quality in relation to soil erodibility under different land uses,” Arid Land Research and Management, vol. 23, no. 2, pp. 152–167, 2009.
[4]
F. Khormali, M. Ajami, S. Ayoubi, C. Srinivasarao, and S. P. Wani, “Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran,” Agriculture, Ecosystems and Environment, vol. 134, no. 3-4, pp. 178–189, 2009.
[5]
P. Vityakon, “Degradation and restoration of sandy soils under different agricultural land uses in northeast Thailand: a review,” Land Degradation and Development, vol. 18, no. 5, pp. 567–577, 2007.
[6]
T. Yüksek, O. Kurdo?lu, and F. Yüksek, “The effects of land use changes and management types on surface soil properties in Kafkas?r protected area in Artvin, Turkey,” Land Degradation and Development, vol. 21, no. 6, pp. 582–590, 2010.
[7]
E. Ozgoz, H. Gunal, N. Acir, F. Gokmen, M. Birol, and M. Budak, “Soil quality and spatial variability assessment of land use effects in a typic haplustoll,” Land Degradation and Development, 2011.
[8]
F. García-Orenes, A. Roldán, J. Mataix-Solera et al., “Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem,” Soil Use and Management, vol. 28, no. 4, pp. 571–579, 2012.
[9]
F. García-Orenes, C. Guerrero, A. Roldán et al., “Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem,” Soil and Tillage Research, vol. 109, no. 2, pp. 110–115, 2010.
[10]
F. García-Orenes, A. Cerdà, J. Mataix-Solera et al., “Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain,” Soil and Tillage Research, vol. 106, no. 1, pp. 117–123, 2009.
[11]
E. Barrios and M. T. Trejo, “Implications of local soil knowledge for integrated soil management in Latin America,” Geoderma, vol. 111, no. 3-4, pp. 217–231, 2003.
[12]
World Bank, Indigenous Knowledge: Local Pathways to Global Development, Knowledge and Learning Center, Africa Region: World Bank, 2004.
[13]
R. R. Pawluk, J. A. Sandor, and J. A. Tabor, “The role of indigenous soil knowledge in agricultural development,” Journal of Soil & Water Conservation, vol. 47, no. 4, pp. 298–302, 1992.
[14]
B. Tesfaye, Understanding Farmers: Explaining Soil and Water Conservation in Konso, Wolaita and Wollo [Ph.D. thesis], Wageningen University, Wageningen, The Netherlands, 2003.
[15]
H. Solomon and K. Yoshinobu, “Traditional Irrigation management in Betmera-Hiwane, Ethiopia: the main peculiarities for persistence of irrigation practices,” Journal of Mountain Science, vol. 2, pp. 139–146, 2006.
[16]
M. Alemayehu, F. Yohannes, and P. Dubale, “Effect of indigenous stone bunding (KAB) on crop yield at Mesobit-Gedeba, North Shoa, Ethiopia,” Land Degradation and Development, vol. 17, no. 1, pp. 45–54, 2006.
[17]
W. Alemayehu, Ethiopian church forests: opportunities and challenges for restoration [Ph.D. thesis], Wageningen University, Wageningen, The Netherlands, 2007.
[18]
F. Yimer, S. Ledin, and A. Abdelkadir, “Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia,” Forest Ecology and Management, vol. 232, no. 1–3, pp. 90–99, 2006.
[19]
F. Bastida, A. Zsolnay, T. Hernández, and C. García, “Past, present and future of soil quality indices: a biological perspective,” Geoderma, vol. 147, no. 3-4, pp. 159–171, 2008.
Sidama Zone Finance and Economic Development sector (SZFEDS), “Socio-economic study,” Southern Nations Nationalities People Regional state, Ethiopia, 2007.
[22]
J. R. Blake and K. H. Hartge, “Bulk Density,” in Methods in Soil Analysis—Part 1. Physical and Mineralogical Methods, A. Klute, Ed., pp. 363–376, American Society of Agronomy, Madison, Wis, USA, 2nd edition, 1986.
[23]
C. A. Black, D. D. Evans, J. L. White, L. E. Ensminger, and F. E. Clark, Methods of Soil Analysis—Part 1. Physical and Mineralogical Properties Including Statistics of Measurement and Sampling, American Society of Agronomy, Madison, Wis, USA, 1965.
[24]
M. Schnitzer, “Total carbon, organic matter and carbon,” in Methods of Soil Analysis—Part 2, Agronomy Monograph, A. L. Page, R. H. Miller, and D. R. Keeney, Eds., vol. 9, pp. 539–577, American Society of Agronomy, Madison, Wis, USA, 2nd edition, 1982.
[25]
J. M. Bremner and C. S. Mulvaney, “Nitrogen-Total,” in Methods of Soil Analysis, A. L. Page, R. H. Miller, and D. R. Keeney, Eds., vol. 2, pp. 595–624, American Society of Agronomy, Madison, Wis, USA, 1982.
[26]
S. R. Olsen and L. A. Dean, “Phosphorous,” in Methods of Soil Analysis—Part 2: Chemical and Microbiological Properties, C. A. Black, Ed., vol. 9, pp. 1035–1049, American Society of Agronomy, Madison, Wis, USA, 1965.
[27]
B. J. J. Jones, Laboratory Guide For Conducting Soil Tests and Plant Analysis, CRC press, LLC, 2001.
[28]
H. D. Chapman, “Cation exchange capacity,” in Methods of Soil Analysis, C. A. Black, Ed., pp. 891–901, American Society of Agronomy, Madison, Wis, USA, 1965.
[29]
F. Yimer, S. Ledin, and A. Abdelkadir, “Concentrations of exchangeable bases and cation exchange capacity in soils of cropland, grazing and forest in the Bale Mountains, Ethiopia,” Forest Ecology and Management, vol. 256, no. 6, pp. 1298–1302, 2008.
[30]
W. Chesworth, Encyclopedia of Soil Science, Springer, Dordrecht, The Netherlands, 2008.
[31]
S. Khresat, J. Al-Bakri, and R. Al-Tahnan, “Impacts of land use/cover change on soil properties in the Mediterranean region of northwestern Jordan,” Land Degradation and Development, vol. 19, no. 4, pp. 397–407, 2008.
[32]
M. Sintayehu, Land Use Dynamics and its Impact on Selected Physicochemical Properties of Soils in Yabello Woreda of Borana Lowlands, Southern Ethiopia [M.S. thesis], Haromaya University, Haromaya, Ethiopia, 2006.
[33]
H. D. Foth, Fundamentals of Soil Science, John Wiley and Sons, New York, NY, USA, 8th edition, 1990.
[34]
N. C. Brady and R. R. Weil, The Nature and Properties of Soils, Prentice-Hall, Upper Saddle River, NJ, USA, 13th edition, 2002.
[35]
T. Gebeyaw, Soil Fertility Status as Influenced by Different Land Uses in Maybar Areas of South Wello Zone, Ethiopia [M.S. thesis], Haromaya University, Haromaya, Ethiopia, 2006.
[36]
M. Lemenih, E. Karltun, and M. Olsson, “Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia,” Agriculture, Ecosystems and Environment, vol. 105, no. 1-2, pp. 373–386, 2005.
[37]
A. Moges and N. M. Holden, “Soil fertility in relation to slope position and agricultural land use: a case study of umbulo catchment in Southern Ethiopia,” Environmental Management, vol. 42, no. 5, pp. 753–763, 2008.
[38]
F. Yimer, S. Ledin, and A. Abdelkadir, “Changes in soil organic carbon and total nitrogen contents in three adjacent land use types in the Bale Mountains, south-eastern highlands of Ethiopia,” Forest Ecology and Management, vol. 242, no. 2-3, pp. 337–342, 2007.
[39]
G. Girmay, B. R. Singh, H. Mitiku, T. Borresen, and R. Lal, “Carbon stocks in Ethiopian soils in relation to land use and soil management,” Land Degradation and Development, vol. 19, no. 4, pp. 351–367, 2008.
[40]
D. C. Reicosky and F. Forcella, “Cover crop and soil quality interactions in agroecosystems,” Journal of Soil and Water Conservation, vol. 53, no. 3, pp. 224–229, 1998.
[41]
J. R. Landon, Ed., Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics, Longman Scientific and Technical, New York, NY, USA, 1991.
[42]
N. Wakene and G. Heluf, “Forms of phosphorus and status of available micronutrients under different land-use systems of alfisols in Bako Area of Ethiopia,” Ethiopian Journal of Natural Resources, vol. 5, pp. 17–37, 2003.
[43]
H. L. Bohn, B. L. Mcneal, H. L. O'connor, B. L. Mcneal, and G. A. O'connor, Soil Chemistry, John Wiley & Sons, New York, Ny, USA, 3rd edition, 2001.
[44]
J. C. Voundi Nkana, A. Demeyer, and M. G. Verloo, “Chemical effects of wood ash on plant growth in tropical acid soils,” Bioresource Technology, vol. 63, no. 3, pp. 251–260, 1998.