The availability of light detection and ranging data (LiDAR) has resulted in a new era of landscape analysis. For example, improvements in LiDAR data resolution may make it possible to accurately model microtopography over a large geographic area; however, data resolution and processing costs versus resulting accuracy may be too costly. We examined two LiDAR datasets of differing resolutions, a low point density (0.714?points/m2 spacing) 1?m DEM available statewide in Pennsylvania and a high point density (10.28?points/m2 spacing) 1?m DEM research-grade DEM, and compared the calculated roughness between both resulting DEMs using standard deviation of slope, standard deviation of curvature, a pit fill index, and the difference between a smoothed splined surface and the original DEM. These results were then compared to field-surveyed plots and transects of microterrain. Using both datasets, patterns of roughness were identified, which were associated with different landforms derived from hydrogeomorphic features such as stream channels, gullies, and depressions. Lowland areas tended to have the highest roughness values for all methods, with other areas showing distinctive patterns of roughness values across metrics. However, our results suggest that the high-resolution research-grade LiDAR did not improve roughness modeling in comparison to the coarser statewide LiDAR. We conclude that resolution and initial point density may not be as important as the algorithm and methodology used to generate a LiDAR-derived DEM for roughness modeling purposes. 1. Introduction Over the past several decades, geomorphologists, soil scientists, ecologists, foresters, and hydrologists have increasingly utilized terrain data for landscape classification [1–4], predicting forest communities [5], predicting soil properties [6–9], and understanding riparian zones and their stream networks [10]. Due to improvements in data acquisition, computing power, and storage capacity, terrain data has become increasingly available at finer and finer resolutions and at broader scales, from National Elevation Dataset (NED) and Shuttle Radar Topography Mission (SRTM) to LiDAR. Although LiDAR-derived DEMs have been shown to be extremely accurate when compared to non-LiDAR generated DEMs [11], the accuracy of LiDAR-derived DEMs for measuring landscape microtopography is debated [12]. This can be due to data interpretation difficulties arising from abiotic (such as slope complexity) and biotic terrain factors (such as evergreen vegetation and coarse woody debris) [13, 14]. LiDAR processing
References
[1]
ECOMAP, National Hierarchical Framework of Ecological Units, USDA Forest Service, Washington, DC, USA, 1993.
[2]
D. T. Cleland, P. E. Avers, W. H. McNab et al., “National hierarchical framework of ecological units,” in Ecosystem Management, M. S. Boyce and A. Haney, Eds., pp. 181–200, Yale University, New Haven, Conn, USA, 1997.
[3]
J. Franklin, “Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients,” Progress in Physical Geography, vol. 19, no. 4, pp. 474–499, 1995.
[4]
W. L. Myers, “Landscape scale ecological mapping of Pennsylvania forests,” Research Report ER2002-2, Environmental Resources Research Institute, University Park, Pa, USA, 2000.
[5]
P. V. Bolstad, W. Swank, and J. Vose, “Predicting Southern Appalachian overstory vegetation with digital terrain data,” Landscape Ecology, vol. 13, no. 5, pp. 271–283, 1998.
[6]
R. Dikau, “The application of a digital relief model to landform analysis in geomorphology,” in Three Dimensional Applications in Geographical Information Systems, J. Raper, Ed., pp. 51–77, Taylor and Fancis, New York, NY, USA, 1989.
[7]
I. D. Moore, P. E. Gessler, G. A. Nielsen, and G. A. Peterson, “Soil attribute prediction using terrain analysis,” Soil Science Society of America Journal, vol. 57, no. 2, pp. 443–452, 1993.
[8]
D. M. Browning and M. C. Duniway, “Digital soil mapping in the absence of field training data: a case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential,” Applied and Environmental Soil Science, vol. 2011, Article ID 421904, 12 pages, 2011.
[9]
R. A. Brown, P. McDaniel, and P. E. Gessler, “Terrain attribute modeling of volcanic ash distributions in Northern Idaho,” Soil Science Society of America Journal, vol. 76, pp. 179–187, 2012.
[10]
B. L. McGlynn and J. Seibert, “Distributed assessment of contributing area and riparian buffering along stream networks,” Water Resources Research, vol. 39, no. 4, pp. TNN21–TNN27, 2003.
[11]
D. F. Maune, Ed., Digital Elevation Models and Technologies and Applications: The DEM User Manual, The American Society for Photogrammetry and Remote Sensing, Bethesda, Md, USA, 2nd edition, 2007.
[12]
K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with airborne laser scanner data,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 53, no. 4, pp. 193–203, 1998.
[13]
J. Su and E. Bork, “Influence of vegetation, slope, and lidar sampling angle on DEM accuracy,” Photogrammetric Engineering and Remote Sensing, vol. 72, no. 11, pp. 1265–1274, 2006.
[14]
L. P. Spaete, N. F. Glenn, D. R. Derryberry, T. T. Sankey, J. J. Mitchell, and S. P. Hardegree, “Vegetation and slope effects on accuracy of a LIDAR-derived DEM in the sagebrush steppe,” Remote Sensing Letters, vol. 2, no. 4, pp. 317–326, 2010.
[15]
J. McKean and J. Roering, “Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry,” Geomorphology, vol. 57, no. 3-4, pp. 331–351, 2004.
[16]
T. Dunne, W. Zhang, and B. F. Aubry, “Effects of rainfall, vegetation, and microtopography on infiltration and runoff,” Water Resources Research, vol. 27, no. 9, pp. 2271–2285, 1991.
[17]
H. Lavee and S. Pariente, “Spatial variability of soil properties along a climatic gradient: guide to Judean Desert Climatalogical Gradient Excursion,” in IGU GERTEC Commission Meeting, pp. 16–30, Jerusalem, Israel, May 1995.
[18]
S. W. Beatty, “Influence of microtopography and canopy species on spatial patterns of forest understory plants,” Ecology, vol. 65, no. 5, pp. 1406–1419, 1984.
[19]
T. Enoki, “Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan,” Ecological Research, vol. 18, no. 2, pp. 103–113, 2003.
[20]
R. J. Naiman and H. Décamps, “The ecology of interfaces: riparian zones,” Annual Review of Ecology and Systematics, vol. 28, pp. 621–658, 1997.
[21]
M. M. Pollock, R. J. Naiman, and T. A. Hanley, “Plant species richness in riparian wetlands-a test of biodiversity theory,” Ecology, vol. 79, no. 1, pp. 94–105, 1998.
[22]
C. H. Huang, “Quantification of soil microtopography and surface roughness,” in Fractals in Soil Science, P. Baveye, J. Y. Parlange, and B. Stewart, Eds., CRC Press, Boca Raton, Fla, USA, 1998.
[23]
G. Govers, I. Takken, and K. Helming, “Soil roughness and overland flow,” Agronomie, vol. 20, no. 2, pp. 131–146, 2000.
[24]
E. C. Kamphorst, V. Jetten, J. Guérif et al., “Predicting depressional storage from soil surface roughness,” Soil Science Society of America Journal, vol. 64, no. 5, pp. 1749–1758, 2000.
[25]
N. F. Glenn, D. R. Streutker, D. J. Chadwick, G. D. Thackray, and S. J. Dorsch, “Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity,” Geomorphology, vol. 73, no. 1-2, pp. 131–148, 2006.
[26]
K. L. Frankel and J. F. Dolan, “Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data,” Journal of Geophysical Research F, vol. 112, no. 2, Article ID F02025, 2007.
[27]
R. J. Schaetzl, S. F. Burns, D. L. Johnson, and T. W. Small, “Tree uprooting: review of impacts on forest ecology,” Vegetatio, vol. 79, no. 3, pp. 165–176, 1988.
[28]
C. M. Rumbaitis Del Rio, “Changes in understory composition following catastrophic windthrow and salvage logging in a subalpine forest ecosystem,” Canadian Journal of Forest Research, vol. 36, no. 11, pp. 2943–2954, 2006.
[29]
G. J. Beke and J. A. McKeague, “Influence of tree windthrow on the properties and classification of selected forested soils from Nova Scotia,” Canadian Journal of Soil Science, vol. 64, no. 2, pp. 195–207, 1984.
[30]
R. Andrle and A. D. Abrahams, “Fractal techniques and the surface roughness of talus slopes,” Earth Surface Processes & Landforms, vol. 14, no. 3, pp. 197–209, 1989.
[31]
M. J. Bai, D. Xu, Y. N. Li, and J. S. Li, “Evaluation of spatial and temporal variability of infiltration on a surface irrigation field,” Journal of Soil and Water Conservation, vol. 19, pp. 120–123, 2005 (Chinese).
[32]
C.-H. Huang and J. M. Bradford, “Applications of a laser scanner to quantify soil microtopography,” Soil Science Society of America Journal, vol. 56, no. 1, pp. 14–21, 1992.
[33]
C. H. Grohmann, M. J. Smith, and C. Riccomini, “Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 4, pp. 1200–1213, 2011.
[34]
M. P. Bishop, L. A. James, J. F. Shroder, and S. J. Walsh, “Geospatial technologies and digital geomorphological mapping: concepts, issues and research,” Geomorphology, vol. 137, pp. 5–26, 2012.
[35]
“PAMAP LiDAR Quality Assurance Report LiDAR Block 2007,” Dewberry, Fairfax, Va, USA, 2009.
[36]
“Shale Hills 2010 NCALM CZO project report,” National Center for Airborne Laser Mapping (NCALM) 2010.
[37]
C. H. Schultz, Ed., The Geology of Pennsylvania, Geologic Survey Special Publication 1, 1999.
[38]
E. J. Ciolkosz, R. C. Cronce, and W. D. Sevon, Periglacial Features in Pennsylvania, Pennsylvania State University, Agron. Ser. 92, 1986.
[39]
R. R. Shields, A shallow seismic refraction study of the soil mantle and bedrock configuration of Leading Ridge Watershed Two [M.S. thesis], School of Forest Resources. Penn State University, University Park, Pa, USA, 1966.
[40]
J. A. Lynch and E. S. Corbett, “Evaluation of best management practices for controlling nonpoint pollution from silvicultural operations,” Water Resources Bulletin, vol. 26, pp. 41–52, 1990.
[41]
S. L. Brantley, T. S. White, A. F. White et al., “Frontiers in exploration of the critical zone: report of a workshop sponsored by the National Science Foundation (NSF),” Newark, Del, USA, 2006.
[42]
S. P. Anderson, R. C. Bales, and C. J. Duffy, “Critical zone observatories: building a network to advance interdisciplinary study of Earth surface processes,” Mineralogical Magazine, vol. 72, no. 1, pp. 7–10, 2008.
D. G. Tarboton, R. L. Bras, and I. Rodriguez-Iturbe, “On the extraction of channel networks from digital elevation data,” Hydrological Processes, vol. 5, no. 1, pp. 81–100, 1991.
[45]
D. E. Tenenbaum, L. E. Band, S. T. Kenworthy, and C. L. Tague, “Analysis of soil moisture patterns in forested and suburban catchments in Baltimore, Maryland, using high-resolution photogrammetric and LIDAR digital elevation datasets,” Hydrological Processes, vol. 20, no. 2, pp. 219–240, 2006.
[46]
X. Liu, Z. Zhang, J. Peterson, and S. Chandra, “The effect of LiDAR data density on DEM accuracy,” in Proceedings of the International Congress on Modelling and Simulation, pp. 1363–1369, Modelling and Simulation Society of Australia and New Zealand Inc., 2007.
[47]
H. Mitasova, L. Mitas, and R. S. Harmon, “Simultaneous spline approximation and topographic analysis for lidar elevation data in open-source GIS,” IEEE Geoscience and Remote Sensing Letters, vol. 2, no. 4, pp. 375–379, 2005.
[48]
E. J. Ciolkosz, B. J. Carter, M. T. Hoover, R. C. Cronce, W. J. Waltman, and R. R. Dobos, “Genesis of soils and landscapes in the Ridge and Valley province of central Pennsylvania,” Geomorphology, vol. 3, no. 3-4, pp. 245–261, 1990.