全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media

DOI: 10.1155/2012/491604

Full-Text   Cite this paper   Add to My Lib

Abstract:

Complex electrochemical reactions such as Oxygen Reduction Reaction (ORR) involving multi-electron transfer is an electrocatalytic inner-sphere electron transfer process that exhibit strong dependence on the nature of the electrode surface. This criterion (along with required stability in acidic electrolytes) has largely limited ORR catalysts to the platinum-based surfaces. New evidence in alkaline media, discussed here, throws light on the involvement of surface-independent outer-sphere electron transfer component in the overall electrocatalytic process. This surface non-specificity gives rise to the possibility of using a wide-range of non-noble metal surfaces as electrode materials for ORR in alkaline media. However, this outer-sphere process predominantly leads only to peroxide intermediate as the final product. The importance of promoting the electrocatalytic inner-sphere electron transfer by facilitation of direct adsorption of molecular oxygen on the active site is emphasized by using pyrolyzed metal porphyrins as electrocatalysts. A comparison of ORR reaction mechanisms between acidic and alkaline conditions is elucidated here. The primary advantage of performing ORR in alkaline media is found to be the enhanced activation of the peroxide intermediate on the active site that enables the complete four-electron transfer. ORR reaction schemes involving both outer- and inner-sphere electron transfer mechanisms are proposed. 1. Introduction Oxygen reduction reaction (ORR) on noble and nonnoble metal surfaces remains as one of the well-investigated electrochemical processes. While under acidic conditions Pt-based systems remain the mainstay as catalyst materials for ORR, in alkaline electrolyte a wide range of nonnoble metals and their oxides are stable enough for practical applications [1, 2]. ORR pathway rather than ORR mechanism has typically been addressed in the literature due to the easy accessibility of the former from rotating ring-disk electrode (RRDE) studies, and the complexity in understanding the latter [3]. ORR pathway is found to be similar in both acid and alkaline media on Pt-based materials [3, 4]. Based on the initial propositions by Damjanovic et al. [4–6], rate determining step (rds) on Pt electrodes is widely agreed to be the first electron transfer step to the adsorbed molecular O2 with or without rapid proton transfer [4–6]. A major alternative viewpoint to rds in ORR was proposed by Yeager et al. [7], wherein it was proposed that ORR on Pt surfaces is likely to involve dissociative chemisorption of molecular O2 with the

References

[1]  J. S. Spendelow and A. Wieckowski, “Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media,” Physical Chemistry Chemical Physics, vol. 9, no. 21, pp. 2654–2675, 2007.
[2]  E. Yeager, “Electrocatalysts for O2 reduction,” Electrochimica Acta, vol. 29, no. 11, pp. 1527–1537, 1984.
[3]  R. Adzic, “Frontiers in electrochemistry,” in Electrocatalysis, J. Lipkowski and P. N. Ross, Eds., vol. 197, Wiley-VCH, New York, NY, USA, 1998.
[4]  D. B. Sepa, M. V. Vojnovic, and A. Damjanovic, “Kinetics and mechanism of O2 reduction at Pt in alkaline solutions,” Electrochimica Acta, vol. 25, no. 11, pp. 1491–1496, 1980.
[5]  D. B. Sepa, M. V. Vojnovic, L. M. Vracar, and A. Damjanovic, “Different views regarding the kinetics and mechanisms of oxygen reduction at Pt and Pd electrodes,” Electrochimica Acta, vol. 32, no. 1, pp. 129–134, 1987.
[6]  A. Damjanovic, A. Dey, and J. O. M. Bockris, “Kinetics of oxygen evolution and dissolution on platinum electrodes,” Electrochimica Acta, vol. 11, no. 7, pp. 791–814, 1966.
[7]  E. Yeager, M. Razaq, D. Gervasio, A. Razaq, and D. Tryk, “The electrolyte factor in O2 reduction electrocatalysis,” Proceedings of the Electrochemical Society, vol. 92-11, pp. 440–473, 1992.
[8]  A. Damjanovic, M. A. Genshaw, and J. O'M Bockris, “Distinction between intermediates produced in main and side electrodic reactions,” The Journal of Chemical Physics, vol. 45, no. 11, pp. 4057–4059, 1966.
[9]  H. S. Wroblowa, Y.-C. Pan, and G. Razumney, “Electroreduction of oxygen a new mechanistic criterion,” Journal of Electroanalytical Chemistry, vol. 69, no. 2, pp. 195–201, 1976.
[10]  N. A. Anastasijevi?, V. Vesovi?, and R. R. Ad?i?, “Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode. Part I. Theory,” Journal of Electroanalytical Chemistry, vol. 229, no. 1-2, pp. 305–316, 1987.
[11]  N. A. Anastasijevi?, V. Vesovi?, and R. R. Ad?i?, “Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode. Part II. Applications,” Journal of Electroanalytical Chemistry, vol. 229, no. 1-2, pp. 317–325, 1987.
[12]  A. J. Bard, “Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge,” Journal of the American Chemical Society, vol. 132, no. 22, pp. 7559–7567, 2010.
[13]  A. J. Bard, R. Parsons, and J. Jordan, Eds., Standard Potentials in Aqueous Solution, 1985.
[14]  H. H. Yang and R. L. McCreery, “Elucidation of the mechanism of dioxygen reduction on metal-free carbon electrodes,” Journal of the Electrochemical Society, vol. 147, no. 9, pp. 3420–3428, 2000.
[15]  B. B. Blizanac, P. N. Ross, and N. M. Markovic, “Oxygen electroreduction on Ag(111): the pH effect,” Electrochimica Acta, vol. 52, no. 6, pp. 2264–2271, 2007.
[16]  J. O. Bockris and J. Appleby, “Alkaline Fuel Cells,” in Assessment of Research Needs for Advanced Fuel Cells, S. S. Penner, Ed., vol. 11, p. 95, 1986.
[17]  A. J. Appleby, “Electrocatalysis,” in Comprehensive Treatise of Electrochemistry, B. E. Conway, Ed., vol. 7, pp. 173–239, Plenum, New York, NY, USA, 1983.
[18]  R. Jasinski, “A new fuel cell cathode catalyst,” Nature, vol. 201, no. 4925, pp. 1212–1213, 1964.
[19]  J. H. Zagal, “Metallophthalocyanines as catalysts in electrochemical reactions,” Coordination Chemistry Reviews, vol. 119, pp. 89–136, 1992.
[20]  “Macrocycles,” in Handbook of Fuel Cells-Fundamentals, J. H. Zagal, Ed., pp. 544–554, John Wiley & Sons, Chichester, UK, 2003.
[21]  B. Wang, “Recent development of non-platinum catalysts for oxygen reduction reaction,” Journal of Power Sources, vol. 152, no. 1-2, pp. 1–15, 2005.
[22]  J.-P. Dodelet, “Oxygen reduction in pem fuel cell conditions: heat- treated non-precious metal-N4 macrocycles and beyond,” in N4-Macrocyclic Metal Complexes, J. H. Zagal, F. Bedioui, and J.-P. Dodelet, Eds., p. 83, Springer, Berlin, Germany, 2006.
[23]  J. M. Ziegelbauer, T. S. Olson, S. Pylypenko et al., “Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications,” Journal of Physical Chemistry C, vol. 112, no. 24, pp. 8839–8849, 2008.
[24]  K. Artyushkova, S. Levendosky, P. Atanassov, and J. Fulghum, “XPS Structural studies of nano-composite non-platinum electrocatalysts for polymer electrolyte fuel cells,” Topics in Catalysis, vol. 46, no. 3-4, pp. 263–275, 2007.
[25]  A. L. Bouwkamp-Wijnoltz, W. Visscher, and J. A. R. van Veen, “The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon,” Electrochimica Acta, vol. 43, no. 21-22, pp. 3141–3152, 1998.
[26]  A. L. Bouwkamp-Wijnoltz, W. Visscher, J. A. R. van Veen, E. Boellaard, A. M. van der Kraan, and S. C. Tang, “On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ m?ssbauer study,” Journal of Physical Chemistry B, vol. 106, no. 50, pp. 12993–13001, 2002.
[27]  A. L. Bouwkamp-Wijnoltz, W. Visscher, J. A. R. van Veen, and S. C. Tang, “Electrochemical reduction of oxygen: an alternative method to prepare active CoN4 catalysts,” Electrochimica Acta, vol. 45, no. 3, pp. 379–386, 1999.
[28]  J. McBreen, W. E. O’Grady, D. E. Sayers, C. Y. Yang, and K. I. Pandya, “An EXAFS study of pyrolyzed metal macrocyclic electrocatalysts,” S. Srinivasan, S. Wagner, and H. Wroblowa, Eds., vol. 87-12, p. 182, The Electrochemical Society, Pennington, NJ, USA.
[29]  H. Schulenburg, S. Stankov, V. Schünemann et al., “Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability and active sites,” Journal of Physical Chemistry B, vol. 107, no. 34, pp. 9034–9041, 2003.
[30]  A. A. Tanaka, S. L. Gupta, D. Tryk, C. Fierro, and E. B. Yeager, “Electrochemical and spectroscopic aspects of heat-treated transition metal macrocycles as electrocatalysts for oxygen reduction,” in Structural Effects in Electrocatalysis and Oxygen Electrochemistry, D. Scherson, D. Tryk, M. Daroux, and X. Xing, Eds., vol. 92-11, p. 555, Proceedings of the Electrochemical Society, 1992.
[31]  I. T. Bae, D. A. Tryk, and D. A. Scherson, “Effect of heat treatment on the redox properties of iron porphyrins adsorbed on high area carbon in acid electrolytes: an in situ Fe K-edge X-ray absorption near-edge structure study,” Journal of Physical Chemistry B, vol. 102, no. 21, pp. 4114–4117, 1998.
[32]  S. Kim, I. T. Bae, M. Sandifer et al., “In situ XANES of an iron porphyrin irreversibly adsorbed on an electrode surface,” Journal of the American Chemical Society, vol. 113, no. 24, pp. 9063–9066, 1991.
[33]  S. Kim, D. A. Tryk, I. T. Bae et al., “In situ extended X-ray absorption fine structure of an iron porphyrin irreversibly adsorbed on an electrode surface,” Journal of Physical Chemistry, vol. 99, no. 25, pp. 10359–10364, 1995.
[34]  M. Lefèvre, J. P. Dodelet, and P. Bertrand, “Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts,” Journal of Physical Chemistry B, vol. 106, no. 34, pp. 8705–8713, 2002.
[35]  M. Lefevre, J. P. Dodelet, and P. Bertrand, “Oi reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors,” Journal of Physical Chemistry B, vol. 104, no. 47, pp. 11238–11247, 2000.
[36]  M. Lefèvre and J. P. Dodelet, “Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts,” Electrochimica Acta, vol. 48, no. 19, pp. 2749–2760, 2003.
[37]  M. Lefèvre, E. Proietti, F. Jaouen, and J. P. Dodelet, “Iron-Based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells,” Science, vol. 324, no. 5923, pp. 71–74, 2009.
[38]  G. Lalande, R. C?té, D. Guay, J. P. Dodelet, L. T. Weng, and P. Bertrand, “Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells?” Electrochimica Acta, vol. 42, no. 9, pp. 1379–1388, 1997.
[39]  G. Lalande, G. Faubert, R. C?té et al., “Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells,” Journal of Power Sources, vol. 61, no. 1-2, pp. 227–237, 1996.
[40]  M. C. M. Alves, J. P. Dodelet, D. Guay, M. Ladouceur, and G. Tourillon, “Origin of the electrocatalytic properties for O2 reduction of some heat-treated polyacrylonitrile and phthalocyanine cobalt compounds adsorbed on carbon black as probed by electrochemistry and X-ray absorption spectroscopy,” Journal of Physical Chemistry, vol. 96, no. 26, pp. 10898–10905, 1992.
[41]  G. Faubert, R. C?té, J. P. Dodelet, M. Lefèvre, and P. Bertrand, “Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride,” Electrochimica Acta, vol. 44, no. 15, pp. 2589–2603, 1999.
[42]  G. Faubert, G. Lalande, R. C?té et al., “Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells,” Electrochimica Acta, vol. 41, no. 10, pp. 1689–1701, 1996.
[43]  P. He, M. Lefèvre, G. Faubert, and J. P. Dodelet, “Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of various transition metal acetates adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride,” Journal of New Materials for Electrochemical Systems, vol. 2, no. 4, pp. 243–251, 1999.
[44]  C. Médard, M. Lefèvre, J. P. Dodelet, F. Jaouen, and G. Lindbergh, “Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports,” Electrochimica Acta, vol. 51, no. 16, pp. 3202–3213, 2006.
[45]  F. Jaouen, E. Proietti, M. Lefèvre et al., “Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells,” Energy and Environmental Science, vol. 4, no. 1, pp. 114–130, 2011.
[46]  D. P. Amalnerkar, S. Radhakrishnan, H. Minoura, T. Sugiura, and Y. Ueno, “Origin of the photocathodic effect at CdS + CuCl electrodes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 260, no. 2, pp. 433–440, 1989.
[47]  G. Gruenig, K. Wiesener, S. Gamburzev, I. Iliev, and A. Kaisheva, “Investigations of catalysts from the pyrolyzates of cobalt-containing and metal-free dibenzotetraazaannulenes on active carbon for oxygen electrodes in an acid medium,” Journal of Electroanalytical Chemistry, vol. 159, no. 1, pp. 155–162, 1983.
[48]  J. A. R. van Veen, J. F. van Baar, and K. J. Kroese, “Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen,” Journal of the Chemical Society, Faraday Transactions 1, vol. 77, no. 11, pp. 2827–2843, 1981.
[49]  P. Vasudevan, Santosh, N. Mann, and S. Tyagi, “Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction,” Transition Metal Chemistry, vol. 15, no. 2, pp. 81–90, 1990.
[50]  F. Jaouen, M. Lefèvre, J. P. Dodelet, and M. Cai, “Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores?” Journal of Physical Chemistry B, vol. 110, no. 11, pp. 5553–5558, 2006.
[51]  C. W. B. Bezerra, L. Zhang, K. Lee et al., “A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction,” Electrochimica Acta, vol. 53, no. 15, pp. 4937–4951, 2008.
[52]  A. Garsuch, A. Bonakdarpour, G. Liu, R. Yang, and J. R. Dahn, “Time to move beyond transition metal–N–C catalysts for oxygen reduction,” in Handbook of Fuel Cells, vol. 5, Springer, New York, NY, USA, 2009.
[53]  N. Ramaswamy, R. J. Allen, and S. Mukerjee, “Electrochemical kinetics and X-ray absorption spectroscopic investigations of oxygen reduction on chalcogen-modified ruthenium catalysts in alkaline media,” Journal of Physical Chemistry C, vol. 115, no. 25, pp. 12650–12664, 2011.
[54]  T. M. Arruda, B. Shyam, J. S. Lawton et al., “Fundamental aspects of spontaneous cathodic deposition of Ru onto Pt/C electrocatalysts and membranes under direct methanol fuel cell operating conditions: an in situ X-ray absorption spectroscopy and electron spin resonance study,” Journal of Physical Chemistry C, vol. 114, no. 2, pp. 1028–1040, 2010.
[55]  T. M. Arruda, B. Shyam, J. M. Ziegelbauer, S. Mukerjee, and D. E. Ramaker, “Investigation into the competitive and site-specific nature of anion adsorption on Pt using in situ X-ray absorption spectroscopy,” Journal of Physical Chemistry C, vol. 112, no. 46, pp. 18087–18097, 2008.
[56]  A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Physical Review B, vol. 58, no. 12, pp. 7565–7576, 1998.
[57]  V. S. Murthi, R. C. Urian, and S. Mukerjee, “Oxygen reduction kinetics in low and medium temperature acid environment: correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts,” Journal of Physical Chemistry B, vol. 108, no. 30, pp. 11011–11023, 2004.
[58]  M. R. Tarasevich, A. Sadkowski, and E. Yeager, “Kinetics and mechanisms of electrode processes,” in Comprehensive Treatise of Electrochemistry, B. E. Conway, J. O. M. Bockris, E. Yeager, S. U. M. Khanand, and R. E. White, Eds., vol. 7, pp. 301–398, Plenum Press, New York, NY, USA, 1983.
[59]  N. M. Markovi?, H. A. Gasteiger, and P. N. Ross, “Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring diskPt(hkl) studies,” Journal of Physical Chemistry, vol. 100, no. 16, pp. 6715–6721, 1996.
[60]  N. Ramaswamy and S. Mukerjee, “Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media,” Journal of Physical Chemistry C, vol. 115, no. 36, pp. 18015–18026, 2011.
[61]  E. Janin, H. Von Schenck, M. G?thelid, U. O. Karlsson, and M. Svensson, “Bridge-bonded atomic oxygen on Pt(110),” Physical Review B, vol. 61, no. 19, pp. 13144–13149, 2000.
[62]  G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, and Y. S. Park, “Surface-oxide growth at platinum electrodes in aqueous H2SO4 Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements,” Electrochimica Acta, vol. 49, no. 9-10, pp. 1451–1459, 2004.
[63]  N. M. Markoví and P. N. Ross, “Surface science studies of model fuel cell electrocatalysts,” Surface Science Reports, vol. 45, no. 4–6, pp. 117–229, 2002.
[64]  P. Chen and R. L. McCreery, “Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification,” Analytical Chemistry, vol. 68, no. 22, pp. 3958–3965, 1996.
[65]  P. Chen, M. A. Fryling, and R. L. McCreery, “Electron transfer kinetics at modified carbon electrode surfaces: the role of specific surface sites,” Analytical Chemistry, vol. 67, no. 18, pp. 3115–3122, 1995.
[66]  N. Wakabayashi, F. Kitamura, T. Ohsaka, and K. Tokuda, “Effect of adsorbed anions on the outer-sphere electron-transfer reactions of cobalt complexes at platinum single-crystal electrodes,” Journal of Electroanalytical Chemistry, vol. 499, no. 1, pp. 161–168, 2001.
[67]  T. Wandlowski and R. de Levie, “Double-layer dynamics in the adsorption of tetrabutylammonium ions at the mercury—water interface Part 4. The reduction of hexammine-cobalt(III) through tetrabutylammonium films,” Journal of Electroanalytical Chemistry, vol. 380, no. 1-2, pp. 201–207, 1995.
[68]  N. A. Anastasijevic, Z. M. Dimitrijevic, and R. R. Adzic, “Oxygen reduction on a ruthenium electrode in alkaline electrolytes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 199, no. 2, pp. 351–364, 1986.
[69]  N. A. Anastasijevic, Z. M. Dimitrijevic, and R. R. Adzic, “Oxygen reduction on a ruthenium electrode in acid electrolytes,” Electrochimica Acta, vol. 31, no. 9, pp. 1125–1130, 1986.
[70]  N. Ramaswamy, R. J. Allen, and S. Mukerjee, “Electrochemical kinetics and X-ray absorption spectroscopic investigations of oxygen reduction on chalcogen-modified ruthenium catalysts in alkaline media,” The Journal of Physical Chemistry C, vol. 115, no. 25, pp. 12650–12664, 2011.
[71]  R. Boulatov, “Billion-Year-Old Oxygen Cathode that Actually Works: Respiratory Oxygen Reduction and Its Biomimetic Analogs,” in N4-Macrocyclic Metal Complexes, J. H. Zagal, F. Bedioui, and J.-P Dodelet, Eds., p. 1, Springer, Berlin, Germany, 2006.
[72]  R. Boulatov, “Metalloporphyrin Catalysts of Oxygen Reduction,” in Fuel Cell Catalysis, M. T. M. Koper, Ed., p. 637, John Wiley & Sons, New York, NY, USA, 2008.
[73]  N. Ramaswamy and S. Mukerjee, “Electrocatalysis of oxygen reduction on nonprecious metallic centers at high pH environments,” ECS Transactions, vol. 33, no. 1, pp. 1777–1785, 2010.
[74]  K. M. Kadish, E. van Caemelbecke, and R. Royal, “Electrochemistry of metalloporphyrins in nonaqueous media,” in The Porphyrin Handbook, K. M. Kadish, K. M. Smith, and R. Guilard, Eds., vol. 8, chapter 55, pp. 1–97, Academic Press, San Diego, Calif, USA, 2000.
[75]  M. Teliska, V. S. Murthi, S. Mukerjee, and D. E. Ramaker, “Correlation of water activation, surface properties, and oxygen reduction reactivity of supported Pt-M/C bimetallic electrocatalysts using XAS,” Journal of the Electrochemical Society, vol. 152, no. 11, pp. A2159–A2169, 2005.
[76]  M. Teliska, W. E. O'Grady, and D. E. Ramaker, “Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L23 X-ray absorption spectroscopy,” Journal of Physical Chemistry B, vol. 109, no. 16, pp. 8076–8084, 2005.
[77]  E. A. Lewis, C. U. Segre, and E. S. Smotkin, “Embedded cluster Δ-XANES modeling of adsorption processes on Pt,” Electrochimica Acta, vol. 54, no. 28, pp. 7181–7185, 2009.
[78]  F. Beck, “The redox mechanism of the chelate-catalysed oxygen cathode,” Journal of Applied Electrochemistry, vol. 7, no. 3, pp. 239–245, 1977.
[79]  S. R. P. Silva, “Properties of Amorphous Carbon,” in Properties of Amorphous Carbon, EMIS Datareviews Series 29, 2003.
[80]  Y. J. Cho, H. S. Kim, S. Y. Baik et al., “Selective nitrogen-doping structure of nanosize graphitic layers,” Journal of Physical Chemistry C, vol. 115, no. 9, pp. 3737–3744, 2011.
[81]  J. R. Hahn and H. Kang, “Vacancy and interstitial defects at graphite surfaces: scanning tunneling microscopic study of the structure, electronic property, and yield for ion-induced defect creation,” Physical Review B, vol. 60, no. 8, pp. 6007–6017, 1999.
[82]  S. L. Mielke, D. Troya, S. Zhang et al., “The role of vacancy defects and holes in the fracture of carbon nanotubes,” Chemical Physics Letters, vol. 390, no. 4–6, pp. 413–420, 2004.
[83]  Y. Luo, Y. Heng, X. Dai, W. Chen, and J. Li, “Preparation and photocatalytic ability of highly defective carbon nanotubes,” Journal of Solid State Chemistry, vol. 182, no. 9, pp. 2521–2525, 2009.
[84]  T. Kondo, T. Suzuki, and J. Nakamura, “Nitrogen doping of graphite for enhancement of durability of supported platinum clusters,” Journal of Physical Chemistry Letters, vol. 2, no. 6, pp. 577–580, 2011.
[85]  P. Nemes-Incze, Z. Koínya, I. Kiricsi et al., “Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy,” Journal of Physical Chemistry C, vol. 115, no. 8, pp. 3229–3235, 2011.
[86]  A. B. Anderson and R. A. Sidik, “Oxygen Electroreduction on FeII and FeIII Coordinated to N4 Chelates. Reversible Potentials for the Intermediate Steps from Quantum Theory,” Journal of Physical Chemistry B, vol. 108, no. 16, pp. 5031–5035, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413