全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Parallel Swarms Oriented Particle Swarm Optimization

DOI: 10.1155/2013/756719

Full-Text   Cite this paper   Add to My Lib

Abstract:

The particle swarm optimization (PSO) is a recently invented evolutionary computation technique which is gaining popularity owing to its simplicity in implementation and rapid convergence. In the case of single-peak functions, PSO rapidly converges to the peak; however, in the case of multimodal functions, the PSO particles are known to get trapped in the local optima. In this paper, we propose a variation of the algorithm called parallel swarms oriented particle swarm optimization (PSO-PSO) which consists of a multistage and a single stage of evolution. In the multi-stage of evolution, individual subswarms evolve independently in parallel, and in the single stage of evolution, the sub-swarms exchange information to search for the global-best. The two interweaved stages of evolution demonstrate better performance on test functions, especially of higher dimensions. The attractive feature of the PSO-PSO version of the algorithm is that it does not introduce any new parameters to improve its convergence performance. The strategy maintains the simple and intuitive structure as well as the implemental and computational advantages of the basic PSO. 1. Introduction Evolutionary algorithms (EAs) are increasingly being applied to solve the problems in diverse domains. These metaheuristic algorithms are found to be successful in many domains chiefly because of their domain-independent evolutionary mechanisms. Evolutionary computation is inspired by biological processes which are at work in nature. Genetic algorithm (GA) [1] modeled on the Darwinian evolutionary paradigm is the oldest and the best known evolutionary algorithm. It mimics the natural processes of selection, crossover, and mutation to search for optimum solutions in massive search spaces. Particle swarm optimization (PSO) is a recently developed algorithm belonging to the class of biologically inspired methods [2–9]. PSO imitates the social behavior of insects, birds, or fish swarming together to hunt for food. PSO is a population-based approach that maintains a set of candidate solutions, called particles, which move within the search space. During the exploration of the search space, each particle maintains a memory of two pieces of information: the best solution (pbest) that it has encountered so far and the best solution (gbest) encountered by the swarm as a whole. This information is used to direct the search. Researchers have found that PSO has the following advantages over the other biologically inspired evolutionary algorithms: (1) its operational principle is very simple and intuitive; (2)

References

[1]  J. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, Mass, USA, 1992.
[2]  R. Eberhart and J. Kennedy, “New optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43, October 1995.
[3]  R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation (CEC '00), pp. 84–88, July 2000.
[4]  R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” in Proceedings of the Congress on Evolutionary Computation (CEC '01), pp. 94–100, San Francisco, Cailf, USA, May 2001.
[5]  R. C. Eberhart and Y. Shi, “Particle swarm optimization: developments, applications and resources,” in Proceedings of the Congress on Evolutionary Computation (CEC '01), pp. 81–86, May 2001.
[6]  J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 1–6, pp. 1942–1948, December 1995.
[7]  J. Kennedy and R. Eberhart, “New optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43, October 1995.
[8]  J. Kennedy and R. C. Eberhart, “Discrete binary version of the particle swarm algorithm,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 4104–4108, October 1997.
[9]  J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, 2001.
[10]  M. R. Alrashidi and M. E. El-Hawary, “A survey of particle swarm optimization applications in power system operations,” Electric Power Components and Systems, vol. 34, no. 12, pp. 1349–1357, 2006.
[11]  R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimization in wireless-sensor networks: a brief survey,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 41, no. 2, pp. 262–267, 2011.
[12]  L. Wang, J. Shen, and J. Yong, “A survey on bio-inspired algorithms for web service composition,” in Proceedings of the IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD '12), pp. 569–574, 2012.
[13]  F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to participle swam optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 225–239, 2004.
[14]  J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.
[15]  G. M. Chen, J. Y. Jia, and Q. Han, “Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm,” Journal of Xi'an Jiaotong University, vol. 40, pp. 1039–1042, 2006.
[16]  Z.-S. Lu and Z.-R. Hou, “Particle swarm optimization with adaptive mutation,” Acta Electronica Sinica, vol. 32, no. 3, pp. 416–420, 2004.
[17]  F. Pan, X. Tu, J. Chen, and J. Fu, “A harmonious particle swarm optimizer—HPSO,” Computer Engineering, vol. 31, no. 1, pp. 169–171, 2005.
[18]  S. Pasupuleti and R. Battiti, “The gregarious particle swarm optimizer—G-PSO,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference (CEC '06), pp. 67–74, July 2006.
[19]  A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 240–255, 2004.
[20]  J. F. Schutte and A. A. Groenwold, “A study of global optimization using particle swarms,” Journal of Global Optimization, vol. 31, no. 1, pp. 93–108, 2005.
[21]  Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation, pp. 101–106, Seoul, Republic of Korea, May 2001.
[22]  K. Tatsumi, T. Yukami, and T. Tanino, “Restarting multi-type particle swarm optimization using an adaptive selection of particle type,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC '09), pp. 923–928, October 2009.
[23]  Y.-L. Zheng, L.-H. Ma, L.-Y. Zhang, and J.-X. Qian, “On the convergence analysis and parameter selection in particle swarm optimization,” in Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 1802–1807, Zhejiang University, Hangzhou, China, November 2003.
[24]  L. P. Zhang, H. J. Yu, D. Z. Chen, and S. X. Hu, “Analysis and improvement of particle swarm optimization algorithm,” Information and Control, vol. 33, pp. 513–517, 2004.
[25]  X. Zhang, Y. Du, G. Qin, and Z. Qin, “Adaptive particle swarm algorithm with dynamically changing inertia weight,” Journal of Xi'an Jiaotong University, vol. 39, no. 10, pp. 1039–1042, 2005.
[26]  T. M. Blackwell and J. Branke, “Multi-Swarm optimization in dynamic environment,” in Lecture Notes in Computer Science, vol. 3005, pp. 489–500, Springer, Berlin, Germany, 2004.
[27]  T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-convergence in dynamic environments,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 459–472, 2006.
[28]  K. Chen, T. Li, and T. Cao, “Tribe-PSO: a novel global optimization algorithm and its application in molecular docking,” Chemometrics and Intelligent Laboratory Systems, vol. 82, no. 1-2, pp. 248–259, 2006.
[29]  B. Niu, Y. Zhu, X. He, and H. Wu, “MCPSO: a multi-swarm cooperative particle swarm optimizer,” Applied Mathematics and Computation, vol. 185, no. 2, pp. 1050–1062, 2007.
[30]  L.-Y. Wu, H. Sun, and M. Bai, “Particle swarm optimization algorithm of two sub-swarms exchange based on different evolvement model,” Journal of Nanchang Institute of Technology, vol. 4, pp. 1–4, 2008.
[31]  Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation (CEC '99), pp. 1945–1950, IEEE Service Center, Piscataway, NJ, USA, 1999.
[32]  J. Jie, W. Wang, C. Liu, and B. Hou, “Multi-swarm particle swarm optimization based on mixed search behavior,” in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA '10), pp. 605–610, June 2010.
[33]  X. Yang, J. Yuan, J. Yuan, and H. Mao, “A modified particle swarm optimizer with dynamic adaptation,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1205–1213, 2007.
[34]  M. Clerc, Particle Swarm Optimization, ISTE Publishing Company, London, UK, 2006.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133