全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Archaea  2013 

Protein Adaptations in Archaeal Extremophiles

DOI: 10.1155/2013/373275

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. 1. Introduction Archaea thrive in many different extremes: heat, cold, acid, base, salinity, pressure, and radiation. These different environmental conditions over time have allowed Archaea to evolve with their extreme environments so that they are adapted to them and, in fact, have a hard time acclimating to less extreme conditions. This is reflected in current taxonomy in Archaea [1, 2]. Archaea are presently partitioned into four branches: the halophiles, the psychrophiles, the thermophiles, and the acidophiles. While we typically think about the methanogens as a distinct group, they are, in fact, spread among all the other branches in Archaea. For the purposes of this review, we have included them in their principle branch (e.g., the thermophiles) where appropriate. The branches of Archaea intersect in interesting ways. For example, alkaliphiles (which are not one of the branches mentioned above) are grouped with the halophiles because the two archaeal groups not only are found together in saline environments but also share genome similarities. Thermophiles and acidophiles branches are also clustered together, not only because most acid environments are hot but because these

References

[1]  A. Kletzin, General Characteristics and Important Model Organisms, ASM Press, Washington, DC, USA, 2007, Archaea: Molecular and Cellular Biology, Edited by: R. Cavicchioli.
[2]  C. Schleper, G. Jurgens, and M. Jonuscheit, “Genomic studies of uncultivated archaea,” Nature Reviews Microbiology, vol. 3, no. 6, pp. 479–488, 2005.
[3]  M. Falb, F. Pfeiffer, P. Palm et al., “Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis,” Genome Research, vol. 15, no. 10, pp. 1336–1343, 2005.
[4]  C. Baker-Austin and M. Dopson, “Life in acid: pH homeostasis in acidophiles,” Trends in Microbiology, vol. 15, no. 4, pp. 165–171, 2007.
[5]  A. Sharma, Y. Kawarabayasi, and T. Satyanarayana, “Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications,” Extremophiles, vol. 16, no. 1, pp. 1–19, 2012.
[6]  W. D. Grant, “Life at low water activity,” Philosophical Transactions of the Royal Society B, vol. 359, no. 1448, pp. 1249–1266, 2004.
[7]  C. Ebel, L. Costenaro, M. Pascu et al., “Solvent interactions of halophilic malate dehydrogenase,” Biochemistry, vol. 41, no. 44, pp. 13234–13244, 2002.
[8]  M. Mevarech, F. Frolow, and L. M. Gloss, “Halophilic enzymes: proteins with a grain of salt,” Biophysical Chemistry, vol. 86, no. 2-3, pp. 155–164, 2000.
[9]  D. B. Wright, D. D. Banks, J. R. Lohman, J. L. Hilsenbeck, and L. M. Gloss, “The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases,” Journal of Molecular Biology, vol. 323, no. 2, pp. 327–344, 2002.
[10]  S. Hauenstein, C.-M. Zhang, Y.-M. Hou, and J. J. Perona, “Shape-selective RNA recognition by cysteinyl-tRNA synthetase,” Nature Structural and Molecular Biology, vol. 11, no. 11, pp. 1134–1141, 2004.
[11]  E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004.
[12]  G. Cacciapuoti, F. Fuccio, L. Petraccone, et al., “Role of disulfide bonds in conformational stability and folding of 5'-deoxy-5'-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus,” Biochimica et Biophysica Acta, vol. 1824, no. 10, pp. 1136–1143, 2012.
[13]  A. Szilágyi and P. Závodszky, “Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey,” Structure, vol. 8, no. 5, pp. 493–504, 2000.
[14]  C. Vieille and G. J. Zeikus, “Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability,” Microbiology and Molecular Biology Reviews, vol. 65, no. 1, pp. 1–43, 2001.
[15]  H. Connaris, J. B. Chaudhuri, M. J. Danson, et al., “Expression, reactivation, and purification of enzymes from Haloferax volcanii in Escherichia coli,” Biotechnology and Bioengineering, vol. 64, no. 1, pp. 38–45, 1999.
[16]  C. Evilia, X. Ming, S. Dassarma, and Y.-M. Hou, “Aminoacylation of an unusual tRNACys from an extreme halophile,” RNA, vol. 9, no. 7, pp. 794–801, 2003.
[17]  Y. Yonezawa, H. Tokunaga, M. Ishibashi, S. Taura, and M. Tokunaga, “Cloning, expression, and efficient purification in Escherichia coli of a halophilic nucleoside diphosphate kinase from the moderate halophile Halomonas sp. #593,” Protein Expression and Purification, vol. 27, no. 1, pp. 128–133, 2003.
[18]  C. Evilia and Y.-M. Hou, “Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase,” Biochemistry, vol. 45, no. 22, pp. 6835–6845, 2006.
[19]  E. Bae and G. N. Phillips Jr., “Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases,” The Journal of Biological Chemistry, vol. 279, no. 27, pp. 28202–28208, 2004.
[20]  S. Kumar and R. Nussinov, “Different roles of electrostatics in heat and in cold: adaptation by citrate synthase,” ChemBioChem, vol. 5, no. 3, pp. 280–290, 2004.
[21]  M. Tehei and G. Zaccai, “Adaptation to high temperatures through macromolecular dynamics by neutron scattering,” FEBS Journal, vol. 274, no. 16, pp. 4034–4043, 2007.
[22]  E. T. Powers and W. E. Balch, “Diversity in the origins of proteostasis networks—a driver for protein function in evolution,” Nature Reviews Molecular Cell Biology, vol. 14, no. 4, pp. 237–248, 2013.
[23]  K. A. Dill, S. B. Ozkan, M. S. Shell, and T. R. Weikl, “The protein folding problem,” Annual Review of Biophysics, vol. 37, pp. 289–316, 2008.
[24]  N. C. Fitzkee, P. J. Fleming, H. Gong, N. Panasik Jr., T. O. Street, and G. D. Rose, “Are proteins made from a limited parts list?” Trends in Biochemical Sciences, vol. 30, no. 2, pp. 73–80, 2005.
[25]  S. J. Tomazic and A. M. Klibanov, “Mechanisms of irreversible thermal inactivation of Bacillusα-amylases,” The Journal of Biological Chemistry, vol. 263, no. 7, pp. 3086–3091, 1988.
[26]  F. Mayer, U. Küper, C. Meyer et al., “AMP-forming acetyl coenzyme a synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis,” Journal of Bacteriology, vol. 194, no. 6, pp. 1572–1581, 2012.
[27]  C. Br?sen, C. Urbanke, and P. Sch?nheit, “A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum,” FEBS Letters, vol. 579, no. 2, pp. 477–482, 2005.
[28]  C. Ingram-Smith and K. S. Smith, “AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization,” Archaea, vol. 2, no. 2, pp. 95–107, 2007.
[29]  P. Del Vecchio, M. Elias, L. Merone et al., “Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus,” Extremophiles, vol. 13, no. 3, pp. 461–470, 2009.
[30]  J. T. Park, H. N. Song, T. Y. Jung, et al., “A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus,” Biochimica Et Biophysica Acta, vol. 1834, no. 1, pp. 380–386, 2013.
[31]  K.-H. Park, T.-J. Kim, T.-K. Cheong, J.-W. Kim, B.-H. Oh, and B. Svensson, “Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family,” Biochimica et Biophysica Acta, vol. 1478, no. 2, pp. 165–185, 2000.
[32]  M. Vihinen, “Relationship of protein flexibility to thermostability,” Protein Engineering, vol. 1, no. 6, pp. 477–480, 1987.
[33]  G. Cacciapuoti, M. Porcelli, C. Bertoldo, M. De Rosa, and V. Zappia, “Purification and characterization of extremely thermophilic and thermostable 5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds,” The Journal of Biological Chemistry, vol. 269, no. 40, pp. 24762–24769, 1994.
[34]  D. R. Boutz, D. Cascio, J. Whitelegge, L. J. Perry, and T. O. Yeates, “Discovery of a thermophilic protein complex stabilized by topologically interlinked chains,” Journal of Molecular Biology, vol. 368, no. 5, pp. 1332–1344, 2007.
[35]  K. J. Woycechowsky and R. T. Raines, “The CXC motif: a functional mimic of protein disulfide isomerase,” Biochemistry, vol. 42, no. 18, pp. 5387–5394, 2003.
[36]  B. Wilkinson and H. F. Gilbert, “Protein disulfide isomerase,” Biochimica et Biophysica Acta, vol. 1699, no. 1-2, pp. 35–44, 2004.
[37]  A. Karshikoff and R. Ladenstein, “Ion pairs and the thermotolerance of proteins from hyperthermophiles: a “traffic rule” for hot roads,” Trends in Biochemical Sciences, vol. 26, no. 9, pp. 550–556, 2001.
[38]  Z. S. Hendsch and B. Tidor, “Do salt bridges stabilize proteins? A continuum electrostatic analysis,” Protein Science, vol. 3, no. 2, pp. 211–226, 1994.
[39]  C.-H. Chan, T.-H. Yu, and K.-B. Wong, “Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding,” PLoS ONE, vol. 6, no. 6, Article ID e21624, 2011.
[40]  S. Fukuchi and K. Nishikawa, “Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria,” Journal of Molecular Biology, vol. 309, no. 4, pp. 835–843, 2001.
[41]  C.-F. Lee, G. I. Makhatadze, and K.-B. Wong, “Effects of charge-to-alanine substitutions on the stability of ribosomal protein L30e from Thermococcus celer,” Biochemistry, vol. 44, no. 51, pp. 16817–16825, 2005.
[42]  Y. F. Liu, N. Zhang, X. Liu, et al., “Molecular mechanism underlying the interaction of typical Sac10b family proteins with DNA,” PLoS ONE, vol. 7, no. 4, Article ID e34986.
[43]  B. Mamat, A. Roth, C. Grimm et al., “Crystal structures and enzymatic properties of three formyltransferases from archaea: environmental adaptation and evolutionary relationship,” Protein Science, vol. 11, no. 9, pp. 2168–2178, 2002.
[44]  J. Breitung, G. Borner, S. Scholz, D. Linder, K. O. Stetter, and R. K. Thauer, “Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran:tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri,” European Journal of Biochemistry, vol. 210, no. 3, pp. 971–981, 1992.
[45]  L. D. Unsworth, J. Van Der Oost, and S. Koutsopoulos, “Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications,” FEBS Journal, vol. 274, no. 16, pp. 4044–4056, 2007.
[46]  M. De Champdoré, M. Staiano, M. Rossi, and S. D'Auria, “Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest,” Journal of the Royal Society Interface, vol. 4, no. 13, pp. 183–191, 2007.
[47]  J. Fang, L. Zhang, and D. A. Bazylinski, “Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry,” Trends in Microbiology, vol. 18, no. 9, pp. 413–422, 2010.
[48]  S. Hay, R. M. Evans, C. Levy et al., “Are the catalytic properties of enzymes from piezophilic organisms pressure adapted?” ChemBioChem, vol. 10, no. 14, pp. 2348–2353, 2009.
[49]  B. B. Boonyaratanakornkit, C. B. Park, and D. S. Clark, “Pressure effects on intra- and intermolecular interactions within proteins,” Biochimica et Biophysica Acta, vol. 1595, no. 1-2, pp. 235–249, 2002.
[50]  M. Di Giulio, “A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: barophily in the physicochemical properties of amino acids and in the genetic code,” Gene, vol. 346, pp. 1–6, 2005.
[51]  E. Mombelli, E. Shehi, P. Fusi, and P. Tortora, “Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings,” Biochimica et Biophysica Acta, vol. 1595, no. 1-2, pp. 392–396, 2002.
[52]  R. Consonni, L. Santomo, P. Fusi, P. Tortora, and L. Zetta, “A single-point mutation in the extreme heat- and pressure- resistant Sso7d protein from Sulfolobus solfataricus leads to a major rearrangement of the hydrophobic core,” Biochemistry, vol. 38, no. 39, pp. 12709–12717, 1999.
[53]  P. Fusi, K. Goossens, R. Consonni, et al., “Extreme heat- and pressure-resistant 7-kDa protein P2 from the archaeon Sulfolobus solfataricus is dramatically destabilized by a single-point amino acid substitution,” Proteins, vol. 29, no. 3, pp. 381–390, 1997.
[54]  M. M. C. Sun, R. Caillot, G. Mak, F. T. Robb, and D. S. Clark, “Mechanism of pressure-induced thermostabilization of proteins: studies of glutamate dehydrogenases from the hyperthermophile Thermococcus litoralis,” Protein Science, vol. 10, no. 9, pp. 1750–1757, 2001.
[55]  E. Rosenbaum, F. Gabel, M. A. Durá et al., “Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii,” Archives of Biochemistry and Biophysics, vol. 517, no. 2, pp. 104–110, 2012.
[56]  F. Simonato, S. Campanaro, F. M. Lauro et al., “Piezophilic adaptation: a genomic point of view,” Journal of Biotechnology, vol. 126, no. 1, pp. 11–25, 2006.
[57]  F. Abe and K. Horikoshi, “The biotechnological potential of piezophiles,” Trends in Biotechnology, vol. 19, no. 3, pp. 102–108, 2001.
[58]  Y. Huang, G. Krauss, S. Cottaz, H. Driguez, and G. Lipps, “A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus,” Biochemical Journal, vol. 385, no. 2, pp. 581–588, 2005.
[59]  O. V. Golyshina and K. N. Timmis, “Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments,” Environmental Microbiology, vol. 7, no. 9, pp. 1277–1288, 2005.
[60]  B. R. Jackson, C. Noble, M. Lavesa-Curto, P. L. Bond, and R. P. Bowater, “Characterization of an ATP-dependent DNA ligase from the acidophilic archaeon “Ferroplasma acidarmanus” Fer1,” Extremophiles, vol. 11, no. 2, pp. 315–327, 2007.
[61]  S. Magnet and J. S. Blanchard, “Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis,” Biochemistry, vol. 43, no. 3, pp. 710–717, 2004.
[62]  T. Rohwerder, T. Gehrke, K. Kinzler, and W. Sand, “Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation,” Applied Microbiology and Biotechnology, vol. 63, no. 3, pp. 239–248, 2003.
[63]  M. Luisa Tutino, G. Di Prisco, G. Marino, and D. De Pascale, “Cold-adapted esterases and lipases: from fundamentals to application,” Protein and Peptide Letters, vol. 16, no. 10, pp. 1172–1180, 2009.
[64]  A. O. Smalas, H. K. Leiros, V. Os, et al., “Cold adapted enzymes,” Biotechnology Annual Review, vol. 6, pp. 1–57, 2000.
[65]  X. Dong and Z. Chen, “Psychrotolerant methanogenic archaea: diversity and cold adaptation mechanisms,” Science China Life Sciences, vol. 55, no. 5, pp. 415–421, 2012.
[66]  G. Feller, “Protein stability and enzyme activity at extreme biological temperatures,” Journal of Physics, vol. 22, no. 32, Article ID 323101, 2010.
[67]  R. Cavicchioli, T. Thomas, and P. M. G. Curmi, “Cold stress response in Archaea,” Extremophiles, vol. 4, no. 6, pp. 321–331, 2000.
[68]  S. Dassarma, M. D. Capes, R. Karan, et al., “Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from antarctica,” PLoS ONE, vol. 8, no. 3, Article ID e58587, 2013.
[69]  R. Karan, M. D. Capes, P. DasSarma, et al., “Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi,” BMC Biotechnology, vol. 13, no. 3, 2013.
[70]  T. Thomas and R. Cavicchioli, “Archaeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens,” FEBS Letters, vol. 439, no. 3, pp. 281–286, 1998.
[71]  N. F. W. Saunders, T. Thomas, P. M. G. Curmi et al., “Mechanisms of thermal adaptatation revealed from genomes of the anatarctic Archaea Methanogenium frigidum and Methanacoccoides burtonii,” Genome Research, vol. 13, no. 7, pp. 1580–1588, 2003.
[72]  S. D'Amico, C. Gerday, and G. Feller, “Structural determinants of cold adaptation and stability in a large protein,” The Journal of Biological Chemistry, vol. 276, no. 28, pp. 25791–25796, 2001.
[73]  D. Georlette, B. Damien, V. Blaise et al., “Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases,” The Journal of Biological Chemistry, vol. 278, no. 39, pp. 37015–37023, 2003.
[74]  L. Giaquinto, P. M. G. Curmi, K. S. Siddiqui et al., “Structure and function of cold shock proteins in archaea,” Journal of Bacteriology, vol. 189, no. 15, pp. 5738–5748, 2007.
[75]  R. J. M. Russell, U. Gerike, M. J. Danson, D. W. Hough, and G. L. Taylor, “Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium,” Structure, vol. 6, no. 3, pp. 351–362, 1998.
[76]  N. Aghajari, F. Van Petegem, V. Villeret et al., “Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases,” Proteins, vol. 50, no. 4, pp. 636–647, 2003.
[77]  S. D'Amico, J. S. Sohier, and G. Feller, “Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic α-amylase,” Journal of Molecular Biology, vol. 358, no. 5, pp. 1296–1304, 2006.
[78]  F. Hasan, A. A. Shah, and A. Hameed, “Industrial applications of microbial lipases,” Enzyme and Microbial Technology, vol. 39, no. 2, pp. 235–251, 2006.
[79]  R. Karan, M. D. Capes, and S. Dassarma, “Function and biotechnology of extremophilic enzymes in low water activity,” Aquatic Biosystems, vol. 8, no. 1, p. 4, 2012.
[80]  G. Zhang, G. Huihua, and L. Yi, “Stability of halophilic proteins: from dipeptide attributes to discrimination classifier,” International Journal of Biological Macromolecules, vol. 53, pp. 1–6, 2013.
[81]  K. L. Britton, P. J. Baker, M. Fisher et al., “Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4846–4851, 2006.
[82]  O. Dym, M. Mevarech, and J. L. Sussman, “Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium,” Science, vol. 267, no. 5202, pp. 1344–1346, 1995.
[83]  F. Frolow, M. Harel, J. L. Sussman, M. Mevarech, and M. Shoham, “Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin,” Nature Structural Biology, vol. 3, no. 5, pp. 452–458, 1996.
[84]  D. Madern, C. Ebel, and G. Zaccai, “Halophilic adaptation of enzymes,” Extremophiles, vol. 4, no. 2, pp. 91–98, 2000.
[85]  G. Zhang and H. Ge, “Protein hypersaline adaptation: insight from amino acids with machine learning algorithms,” The Protein Journal, vol. 32, no. 4, pp. 239–245, 2013.
[86]  P. L. Kastritis, N. C. Papandreou, and S. J. Hamodrakas, “Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs,” International Journal of Biological Macromolecules, vol. 41, no. 4, pp. 447–453, 2007.
[87]  J. Soppa, “From genomes to function: haloarchaea as model organisms,” Microbiology, vol. 152, no. 3, pp. 585–590, 2006.
[88]  X. Tadeo, B. López-Méndez, T. Trigueros, A. Laín, D. Casta?o, and O. Millet, “Structural basis for the aminoacid composition of proteins from halophilic archea,” PLoS Biology, vol. 7, no. 12, Article ID e1000257, 2009.
[89]  S. B. Richard, D. Madern, E. Garcin, and G. Zaccai, “Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 ? resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui,” Biochemistry, vol. 39, no. 5, pp. 992–1000, 2000.
[90]  J. Qvist, G. Ortega, X. Tadeo, O. Millet, and B. Halle, “Hydration dynamics of a halophilic protein in folded and unfolded states,” Journal of Physical Chemistry B, vol. 116, no. 10, pp. 3436–3444, 2012.
[91]  A. Siglioccolo, A. Paiardini, M. Piscitelli, and S. Pascarella, “Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface,” BMC Structural Biology, vol. 11, article 50, 2011.
[92]  M. Müller-Santos, E. M. de Souza, F. D. O. Pedrosa et al., “First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui,” Biochimica et Biophysica Acta, vol. 1791, no. 8, pp. 719–729, 2009.
[93]  L. M. Longo, J. Lee, and M. Blaber, “Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 6, pp. 2135–2139, 2013.
[94]  C. M.-J. Taupin, M. H?rtlein, and R. Leberman, “Seryl-tRNA synthetase from the extreme halophile Haloarcula marismortui. Isolation, characterization and sequencing of the gene and its expression in Escherichia coli,” European Journal of Biochemistry, vol. 243, no. 1-2, pp. 141–150, 1997.
[95]  C. M.-J. Taupin and R. Leberman, “Archaeabacterial seryl-tRNA synthetases: adaptation to extreme environments and evolutionary analysis,” Journal of Molecular Evolution, vol. 48, no. 4, pp. 408–420, 1999.
[96]  G. Zaccai, F. Cendrin, Y. Haik, N. Borochov, and H. Eisenberg, “Stabilization of halophilic malate dehydrogenase,” Journal of Molecular Biology, vol. 208, no. 3, pp. 491–500, 1989.
[97]  B.-L. Marg, K. Schweimer, H. Sticht, and D. Oesterhelt, “A two-α-helix extra domain mediates the halophilic character of a plant-type ferredoxin from Halophilic Archaea,” Biochemistry, vol. 44, no. 1, pp. 29–39, 2005.
[98]  A. Oren, “Industrial and environmental applications of halophilic microorganisms,” Environmental Technology, vol. 31, no. 8-9, pp. 825–834, 2010.
[99]  M. Ishibashi, T. Hayashi, C. Yoshida, et al., “Increase of salt dependence of halophilic nucleoside diphosphate kinase caused by a single amino acid substitution,” Extremophiles, vol. 17, no. 4, pp. 585–591, 2013.
[100]  H. Tokunaga, T. Arakawa, and M. Tokunaga, “Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases,” Protein Science, vol. 17, no. 9, pp. 1603–1610, 2008.
[101]  M. Enache, T. Itoh, T. Fukushima, R. Usami, L. Dumitru, and M. Kamekura, “Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB′ gene and protein sequences,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 10, pp. 2289–2295, 2007.
[102]  B. Ollivier, P. Caumette, J.-L. Garcia, and R. A. Mah, “Anaerobic bacteria from hypersaline environments,” Microbiological Reviews, vol. 58, no. 1, pp. 27–38, 1994.
[103]  W. D. Grant, Half A Lifetime in soda lakes, Springer, New York, NY, USA, 2004, Halophilic Microorganisms, Edited by: A. Ventosa.
[104]  K. Horikoshi, “Alkaliphiles: some applications of their products for biotechnology,” Microbiology and Molecular Biology Reviews, vol. 63, no. 4, pp. 735–750, 1999.
[105]  S. Siddaramappa, J. F. Challacombe, R. E. De Castro et al., “A comparative genomics perspective on the geneticcontent of the alkaliphilic haloarchaeon Natrialbamagadii ATCC 43099T,” BMC Genomics, p. 165, 2012.
[106]  M. I. Giménez, C. A. Studdert, J. J. Sánchez, and R. E. De Castro, “Extracellular protease of Natrialba magadii: purification and biochemical characterization,” Extremophiles, vol. 4, no. 3, pp. 181–188, 2000.
[107]  N. Eswar, B. Webb, M. A. Marti-Renom et al., “Comparative protein structure modeling using Modeller,” Current Protocols in Bioinformatics, vol. 5, 2006.
[108]  W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996.
[109]  J. Goecks, A. Nekrutenko, J. Taylor, and T. Galaxy Team, “Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences,” Genome Biology, vol. 11, no. 8, p. R86, 2010.
[110]  S. R. Eddy, “Profile hidden Markov models,” Bioinformatics, vol. 14, no. 9, pp. 755–763, 1998.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133