Coenzyme M is an essential coenzyme for methanogenesis. The proposed biosynthetic pathway consists of five steps, of which the fourth step is catalyzed by sulfopyruvate decarboxylase (ComDE). Disruption of the gene comE by transposon mutagenesis resulted in a partial coenzyme M auxotroph, which grew poorly in the absence of coenzyme M and retained less than 3% of the wild type level of coenzyme M biosynthesis. Upon coenzyme M addition, normal growth of the mutant was restored. Moreover, complementation of the mutation with the wild type comE gene in trans restored full growth in the absence of coenzyme M. These results confirm that ComE plays an important role in coenzyme M biosynthesis. The inability to yield a complete CoM auxotroph suggests that either the transposon insertion failed to completely inactivate the gene or M. maripaludis possesses a promiscuous activity that partially complemented the mutation. 1. Introduction Hydrogenotrophic methanogens, such as Methanococcus maripaludis, possess a specialized metabolism. In a process known as methanogenesis, they reduce CO2 to CH4 using H2 or formate as the electron donor [1]. While other methanoarchaea can use acetate, methylamine, and other methyl-group-containing compounds [1], coenzyme M (CoM), the smallest known organic cofactor, plays a key role as the last methyl carrier in all methanogens [2]. Thus, methane is formed upon the reduction of methyl-CoM with coenzyme B (CoB) as an electron donor by the methyl-CoM reductase. The oxidation of CoB yields a heterodisulfide with CoM (CoM-S-S-CoB), which is reduced to regenerate the thiols by heterodisulfide reductase (Hdr) [3]. Without coenzyme M being present to complete the biosynthesis of methane, the organism is unable to produce the necessary energy for growth. The biosynthetic pathway of coenzyme M (CoM) in Methanocaldococcus jannaschii, an organism closely related to M. maripaludis, is proposed to proceed in five steps. Four enzymes involved in the biosynthesis of CoM have been biochemically characterized [7–10]. In addition, the genes encoding these enzymes have been identified in diverse methanogens, including M. maripaludis. The proposed pathway for the biosynthesis of CoM starts with the sulfonation of PEP by a phosphoenolpyruvate sulfotransferase (ComA). Then, a phosphosulfolactate phosphatase (ComB) hydrolyses phosphosulfolactate, and a dehydrogenase (ComC) oxidizes the (R)-sulfolactate intermediate to form sulfopyruvate. In the fourth step, a sulfopyruvate decarboxylase (ComDE) catalyzes the decarboxylation of sulfopyruvate to form
References
[1]
R. Hedderich and W. B. Whitman, “Physiology and biochemistry of the methane-producing Archaea,” in The Prokaryotes, E. Rosenberg, E. Stackebrandt, F. Thompson, S. Lory, and E. F. DeLong, Eds., pp. 1050–1079, Springer, New York, NY, USA, 2006.
[2]
D. E. Graham and R. H. White, “Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics,” Natural Product Reports, vol. 19, no. 2, pp. 133–147, 2002.
[3]
Y. Liu and W. B. Whitman, “Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea,” Annals of the New York Academy of Sciences, vol. 1125, pp. 171–189, 2008.
[4]
W. B. Whitman, J. Shieh, S. Sohn, D. S. Caras, and U. Premachandran, “Isolation and characterization of 22 mesophilic methanococci,” Systematic and Applied Microbiology, vol. 7, no. 2, pp. 235–240, 1986.
[5]
F. B. Sarmiento, J. A. Leigh, and W. B. Whitman, “Genetic systems for hydrogenotrophic methanogens,” Methods in Enzymology, vol. 494, pp. 43–73, 2011.
[6]
I. Porat and W. B. Whitman, “Tryptophan auxotrophs were obtained by random transposon insertions in the Methanococcus maripaludis tryptophan operon,” FEMS Microbiology Letters, vol. 297, no. 2, pp. 250–254, 2009.
[7]
M. Graupner, H. Xu, and R. H. White, “Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea,” Journal of Bacteriology, vol. 182, no. 13, pp. 3688–3692, 2000.
[8]
M. Graupner, H. Xu, and R. H. White, “Identification of the gene encoding sulfopyruvate decarboxylase, an enzyme involved in biosynthesis of coenzyme M,” Journal of Bacteriology, vol. 182, no. 17, pp. 4862–4867, 2000.
[9]
D. E. Graham, M. Graupner, H. Xu, and R. H. White, “Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase: a member of a new class of Mg2+-dependent acid phosphatases,” European Journal of Biochemistry, vol. 268, no. 19, pp. 5176–5188, 2001.
[10]
D. E. Graham, H. Xu, and R. H. White, “Identification of coenzyme M biosynthetic phosphosulfolactate synthase. A new family of sulfonate-biosynthesizing enzymes,” Journal of Biological Chemistry, vol. 277, no. 16, pp. 13421–13429, 2002.
[11]
M. Dybas and J. Konisky, “Transport of coenzyme M (2-mercaptoethanesulfonic acid) and methylcoenzyme M [(2-methylthio)ethanesulfonic acid] in Methanococcus voltae: identification of specific and general uptake systems,” Journal of Bacteriology, vol. 171, no. 11, pp. 5866–5871, 1989.
[12]
P. A. Micheletti, K. A. Sment, and J. Konisky, “Isolation of a coenzyme M-auxotrophic mutant and transformation by electroporation in Methanococcus voltae,” Journal of Bacteriology, vol. 173, no. 11, pp. 3414–3418, 1991.
[13]
S. Rozen and H. Skaletsky, “Primer3 on the WWW for general users and for biologist programmers,” Methods in Molecular Biology, vol. 132, pp. 365–386, 2000.
[14]
W. J. Jones, W. B. Whitman, R. D. Fields, and R. S. Wolfe, “Growth and plating efficiency of methanococci on agar media,” Applied and Environmental Microbiology, vol. 46, no. 1, pp. 220–226, 1983.
[15]
Y. Liu, M. Sieprawska-Lupa, W. B. Whitman, and R. H. White, “Cysteine is not the sulfur source for iron-sulfur cluster and methionine biosynthesis in the methanogenic archaeon Methanococcus maripaludis,” Journal of Biological Chemistry, vol. 285, no. 42, pp. 31923–31929, 2010.
[16]
W. E. Balch and R. S. Wolfe, “New approach to the cultivation of methanogenic bacteria: 2 mercaptoethanesulfonic acid (HS CoM) dependent growth of Methanobacterium ruminantium in a pressurized atmosphere,” Applied and Environmental Microbiology, vol. 32, no. 6, pp. 781–791, 1976.