全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Archaea  2013 

Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

DOI: 10.1155/2013/102972

Full-Text   Cite this paper   Add to My Lib

Abstract:

The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates. 1. Introduction Frequently, biofilm formation in marine and freshwater systems is accompanied by precipitation of minerals. These minerals are also structurally integrative parts of the microbial biofilm [1]. In most cases, mineral precipitates are deposited in close contact to and in interaction with organic macromolecules, that is, carbohydrates and/or proteins [2]. Formation of a biomineral in a microbial biofilm may be detrimental to the organisms which is mainly due to the enclosure of the living biomass by mineral precipitates. However, also positive effects, for example, when lithified precipitates provide a matrix or scaffold for the microbial biomass, may be expected. It has also been considered that beneficial effects predominate, for example, when biominerals act as chemical filters or shield UV radiation [3]. It is known that, in certain cases, biological macromolecules influence solubility of minerals (e.g., by buffering the aqueous environment or by chelating ions) and may direct the formation of a mineral matrix in a more or less specific way. As a consequence, the shape of biomineral deposits varies considerably at narrow scales and seemingly similar environmental conditions [4]. Mineral deposits caused by the activity of microorganisms are mostly based on either carbonates or silicates [4]. These mineral phases are regularly intermixed with other organic or mineralic compounds (overviews in [2, 5]). A special case of these organomineral precipitations is microbialite formation during anaerobic oxidation of methane (AOM). AOM is conducted by various groups of archaea in a metabolic pathway reverting methanogenesis [6]. Mostly, sulfate reducing bacteria (SRB)

References

[1]  R. V. Burne and L. S. Moore, “Microbialites: organosedimentary deposits of benthic microbial communities,” Palaios, vol. 2, no. 3, pp. 241–254, 1987.
[2]  A. W. Decho, “Microbial biofilms in intertidal systems: an overview,” Continental Shelf Research, vol. 20, no. 10-11, pp. 1257–1273, 2000.
[3]  V. R. Phoenix and K. O. Konhauser, “Benefits of bacterial biomineralization,” Geobiology, vol. 6, no. 3, pp. 303–308, 2008.
[4]  D. S. S. Lim, B. E. Laval, G. Slater et al., “Limnology of Pavilion Lake, B. C., Canada: characterization of a microbialite forming environment,” Fundamental and Applied Limnology, vol. 173, no. 4, pp. 329–351, 2009.
[5]  P. U. P. A. Gilbert, M. Abrecht, and B. H. Frazer, “The organic-mineral interface in biominerals,” Reviews in Mineralogy and Geochemistry, vol. 59, pp. 157–185, 2005.
[6]  S. J. Hallam, N. Putnam, C. M. Preston et al., “Reverse methanogenesis: testing the hypothesis with environmental genomics,” Science, vol. 305, no. 5689, pp. 1457–1462, 2004.
[7]  J. Peckmann, A. Reimer, U. Luth et al., “Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea,” Marine Geology, vol. 177, no. 1-2, pp. 129–150, 2001.
[8]  J. Reitner, J. Peckmann, M. Blumenberg, W. Michaelis, A. Reimer, and V. Thiel, “Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 227, no. 1–3, pp. 18–30, 2005.
[9]  J. Reitner, J. Peckmann, A. Reimer, G. Schumann, and V. Thiel, “Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea),” Facies, vol. 51, no. 1–4, pp. 66–79, 2005.
[10]  J. T. Milucka, T. G. Ferdelman, L. Polereck et al., “Zero-valent sulphur is a key intermediate in marine methane oxidation,” Nature, vol. 491, no. 7425, pp. 541–546, 2012.
[11]  K. U. Hinrichs and A. Boetius, “The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry,” in Ocean Margin Systems, G. Wefer, D. Billet, D. Hebbeln, B. B. J?rgensen, M. Schlüter, and T. van Weering, Eds., pp. 457–477, Springer, Heidelberg, Germany, 2002.
[12]  W. Michaelis, R. Seifert, K. Nauhaus et al., “Microbial reefs in the black sea fueled by anaerobic oxidation of methane,” Science, vol. 297, no. 5583, pp. 1013–1015, 2002.
[13]  C. T. Lefèvre, N. Menguy, F. Abreu et al., “A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria,” Science, vol. 334, no. 6063, pp. 1720–1723, 2011.
[14]  C. Wrede, V. Krukenberg, A. Dreier, J. Reitner, C. Heller, and M. Hoppert, “Detection of metabolic key enzymes of methane turnover processes in cold seep microbial biofilms,” Geomicrobiology Journal, vol. 30, no. 3, pp. 214–227, 2013.
[15]  M. Hoppert and F. Mayer, “Electron microscopy of native and artificial methylreductase high-molecular-weight complexes in strain Go 1 and Methanococcus voltae,” FEBS Letters, vol. 267, no. 1, pp. 33–37, 1990.
[16]  I. J. Braks, M. Hoppert, S. Roge, and F. Mayer, “Structural aspects and immunolocalization of the F420-reducing and non- F420-reducing hydrogenases,” Journal of Bacteriology, vol. 176, no. 24, pp. 7677–7687, 1994.
[17]  M. Krüger, A. Meyerdierks, F. O. Gl?ckner et al., “A conspicuous nickel protein in microbial mats that oxidize methane anaerobically,” Nature, vol. 426, no. 6968, pp. 878–881, 2003.
[18]  C. Wrede, C. Heller, J. Reitner, and M. Hoppert, “Correlative light/electron microscopy for the investigation of microbial mats from Black Sea Cold Seeps,” Journal of Microbiology Methods, vol. 73, no. 2, pp. 85–91, 2008.
[19]  M. K?mper, S. Vetterkind, R. Berker, and M. Hoppert, “Methods for in situ detection and characterization of extracellular polymers in biofilms by electron microscopy,” Journal of Microbiological Methods, vol. 57, no. 1, pp. 55–64, 2004.
[20]  R. Bauer, “Electron spectroscopic imaging: an advanced technique for imaging and analysis in transmission electron microscopy,” Methods in Microbiology, vol. 20, pp. 113–146, 1988.
[21]  D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. J. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” Journal of Electron Microscopy, vol. 48, no. 3, pp. 277–287, 1999.
[22]  C. Heller, M. Hoppert, and J. Reitner, “Immunological localization of coenzyme M reductase in anaerobic methane-oxidizing archaea of ANME 1 and ANME 2 type,” Geomicrobiology Journal, vol. 25, no. 3-4, pp. 149–156, 2008.
[23]  T. J. Beveridge, G. D. Sprott, and P. Whippey, “Ultrastructure, inferred porosity, and gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium,” Journal of Bacteriology, vol. 173, no. 1, pp. 130–140, 1991.
[24]  A. Boetius, K. Ravenschlag, C. J. Schubert et al., “A marine microbial consortium apparently mediating anaerobic oxidation methane,” Nature, vol. 407, no. 6804, pp. 623–626, 2000.
[25]  L. Schreiber, T. Holler, K. Knittel, A. Meyerdierks, and R. Amann, “Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade,” Environmental Microbiology, vol. 12, no. 8, pp. 2327–2340, 2010.
[26]  A. Scheffel, M. Gruska, D. Faivre, A. Linaroudis, J. M. Plitzko, and D. Schüler, “An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria,” Nature, vol. 440, no. 7080, pp. 110–114, 2006.
[27]  J. Schieber, “Sedimentary pyrite: a window into the microbial past,” Geology, vol. 30, no. 6, pp. 531–534, 2002.
[28]  L. C. W. MacLean, T. Tyliszczak, P. U. P. A. Gilbert et al., “A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm,” Geobiology, vol. 6, no. 5, pp. 471–480, 2008.
[29]  M. Pósfai, B. M. Moskowitz, B. Arató et al., “Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1,” Earth and Planetary Science Letters, vol. 249, no. 3-4, pp. 444–455, 2006.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133