全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Archaea  2013 

Ribonucleoproteins in Archaeal Pre-rRNA Processing and Modification

DOI: 10.1155/2013/614735

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs) requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP) machines. They are called small RNPs (sRNPs), in Archaea, and small nucleolar RNPs (snoRNPs), in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures. 1. Introduction Without ribosomes, cells cannot grow and divide. Thus, it is not surprising that ribosomes have been selectively conserved through millennia and are one of the few macromolecular machines present in all three domains of life. Having been under such tight selective pressure, ribosomes have been and continue to be used in establishing phylogenetic relationships through one specific component, the 16S rRNA in Bactria and Archaea and the 18S rRNA in Eukarya [1–3]. This led scientists to uncover that instead of only “prokaryotes” and “eukaryotes,” there is an additional third domain that would become the Archaea [4, 5]. Ribosome biogenesis and processing begins with ribosomal gene organization. This paper will cover both the genome organization of various rRNA operons in Archaea as well as the small ribonucleoproteins (sRNPs) responsible for chemical modification of nucleotides on the rRNA. In particular, the two most abundant types of chemical modifications are mediated by box C/D and box H/ACA sRNPs. It is not yet well understood why these nucleotides are chemically modified. In considering these modifications of rRNA, it is first important to understand why ribosomes are essential, how Archaea are unique, and how their ribosomal RNA loci are organized in the genome. 2. Ribosomes and rRNA Ribosomes are essential for the translation of mRNA into a polypeptide chain that is then folded into a functional protein [6]. These cellular machines are not only comprised of rRNA (transcribed from ribosomal DNA, rDNA), but also a number of ribosomal proteins that are required for the

References

[1]  W. F. Doolittle, “Phylogenetic classification and the universal tree,” Science, vol. 284, no. 5423, pp. 2124–2128, 1999.
[2]  P. Yarza, M. Richter, J. Peplies et al., “The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains,” Systematic and Applied Microbiology, vol. 31, no. 4, pp. 241–250, 2008.
[3]  G. E. Fox, L. J. Magrum, W. E. Balch, R. S. Wolfe, and C. R. Woese, “Classification of methanogenic bacteria by 16S ribosomal RNA characterization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 10, pp. 4537–4541, 1977.
[4]  C. R. Woese and G. E. Fox, “Phylogenetic structure of the prokaryotic domain: the primary kingdoms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, pp. 5088–5090, 1977.
[5]  C. R. Woese, O. Kandler, and M. L. Wheelis, “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 12, pp. 4576–4579, 1990.
[6]  R. Green and H. F. Noller, “Ribosomes and translation,” Annual Review of Biochemistry, vol. 66, pp. 679–716, 1997.
[7]  P. J. Shaw and E. G. Jordan, “The nucleolus,” Annual Review of Cell and Developmental Biology, vol. 11, pp. 93–121, 1995.
[8]  J. R. Warner, “The economics of ribosome biosynthesis in yeast,” Trends in Biochemical Sciences, vol. 24, no. 11, pp. 437–440, 1999.
[9]  T. Allers and M. Mevarech, “Archaeal genetics—the third way,” Nature Reviews Genetics, vol. 6, no. 1, pp. 58–73, 2005.
[10]  A. E. Hage and D. Tollervey, “A surfeit of factors: why is ribosome assembly so much more complicated in eukaryotes than bacteria?” RNA Biology, vol. 1, no. 1, pp. 10–15, 2004.
[11]  G. Klug, E. Evguenieva-Hackenberg, A. D. Omer, et al., RNA Processing, American Society for Microbiology, Washington, DC, USA, 2007.
[12]  C. R. Woese, L. J. Magrum, and G. E. Fox, “Archaebacteria,” Journal of Molecular Evolution, vol. 11, no. 3, pp. 245–252, 1978.
[13]  R. P. Anitori, Ed., Extremophiles: Microbiology and Biotechnology, Caister Academic Press, Norfolk, UK, 2012.
[14]  Z. M. P. Lee, C. Bussema III, and T. M. Schmidt, “rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea,” Nucleic Acids Research, vol. 37, no. 1, pp. D489–D493, 2009.
[15]  J. A. Klappenbach, P. R. Saxman, J. R. Cole, and T. M. Schmidt, “rrndb: the ribosomal RNA operon copy number database,” Nucleic Acids Research, vol. 29, no. 1, pp. 181–184, 2001.
[16]  K. R. Bower-Phipps, D. W. Taylor, H. Wang, and S. J. Baserga, “The box C/D sRNP dimeric architecture is conserved across domain Archaea,” RNA, vol. 18, no. 8, pp. 1527–1540, 2012.
[17]  J. Lin, S. Lai, R. Jia et al., “Structural basis for site-specific ribose methylation by box C/D RNA protein complexes,” Nature, vol. 469, no. 7331, pp. 559–563, 2011.
[18]  A. L. Hartman, C. Norais, J. H. Badger et al., “The complete genome sequence of Haloferax volcanii DS2, a model archaeon,” PloS One, vol. 5, no. 3, article e9605, 2010.
[19]  J. Chant and P. Dennis, “Archaebacteria: transcription and processing of ribosomal RNA sequences in Halobacterium cutirubrum,” The EMBO Journal, vol. 5, no. 5, pp. 1091–1097, 1986.
[20]  J. Kjems and R. A. Garrett, “An intron in the 23S ribosomal RNA gene of the archaebacterium Desulfurococcus mobilis,” Nature, vol. 318, no. 6047, pp. 675–677, 1985.
[21]  J. Kjems and R. A. Garrett, “Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 2, pp. 439–443, 1991.
[22]  S. Burggraf, N. Larsen, C. R. Woese, and K. O. Stetter, “An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 6, pp. 2547–2550, 1993.
[23]  J. Z. Dalgaard, R. A. Garrett, and M. Belfort, “Purification and characterization of two forms of I-DmoI, a thermophilic site-specific endonuclease encoded by an archaeal intron,” Journal of Biological Chemistry, vol. 269, no. 46, pp. 28885–28892, 1994.
[24]  J. Z. Dalgaard, R. A. Garrett, and M. Belfort, “A site-specific endonuclease encoded by a typical archaeal intron,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 12, pp. 5414–5417, 1993.
[25]  V. Salman, R. Amann, D. A. Shub, et al., “Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 4203–4208, 2012.
[26]  A. D. Omer, S. Ziesche, H. Ebhardt, and P. P. Dennis, “In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5289–5294, 2002.
[27]  B. Charpentier, S. Muller, and C. Branlant, “Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation,” Nucleic Acids Research, vol. 33, no. 10, pp. 3133–3144, 2005.
[28]  D. L. Baker, O. A. Youssef, M. I. R. Chastkofsky, D. A. Dy, R. M. Terns, and M. P. Terns, “RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP,” Genes & Development, vol. 19, no. 10, pp. 1238–1248, 2005.
[29]  D. Tollervey, “Small nucleolar RNAs guide ribosomal RNA methylation,” Science, vol. 273, no. 5278, pp. 1056–1057, 1996.
[30]  P. Ganot, M. L. Bortolin, and T. Kiss, “Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs,” Cell, vol. 89, no. 5, pp. 799–809, 1997.
[31]  Z. Kiss-László, Y. Henry, J. P. Bachellerie, M. Caizergues-Ferrer, and T. Kiss, “Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs,” Cell, vol. 85, no. 7, pp. 1077–1088, 1996.
[32]  M. Nicoloso, L. H. Qu, B. Michot, and J. P. Bachellerie, “Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs,” Journal of Molecular Biology, vol. 260, no. 2, pp. 178–195, 1996.
[33]  J. Cavaillé, M. Nicoloso, and J. P. Bachellerie, “Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides,” Nature, vol. 383, no. 6602, pp. 732–735, 1996.
[34]  B. Lapeyre, “Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation,” in Fine-Tuning of RNA Functions by Modification and Editing, vol. 12, pp. 263–284, Springer, New York, NY, USA, 2005.
[35]  W. A. Decatur and M. J. Fournier, “rRNA modifications and ribosome function,” Trends in Biochemical Sciences, vol. 27, no. 7, pp. 344–351, 2002.
[36]  K. R. Noon, E. Bruenger, and J. A. McCloskey, “Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus,” Journal of Bacteriology, vol. 180, no. 11, pp. 2883–2888, 1998.
[37]  W. A. Decatur and M. J. Fournier, “RNA-guided nucleotide modification of ribosomal and other RNAs,” Journal of Biological Chemistry, vol. 278, no. 2, pp. 695–698, 2003.
[38]  J. Ofengand and A. Bakin, “Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts,” Journal of Molecular Biology, vol. 266, no. 2, pp. 246–268, 1997.
[39]  B. E. H. Maden, “The numerous modified nucleotides in eukaryotic ribosomal RNA,” Progress in Nucleic Acid Research and Molecular Biology, vol. 39, pp. 241–303, 1990.
[40]  D. D. Piekna-Przybylska, W. A. Decatur, and M. J. Fournier, “The 3D rRNA modification maps database: with interactive tools for ribosome analysis,” Nucleic Acids Research, vol. 36, no. 1, pp. D178–D183, 2008.
[41]  M. Del Campo, Y. Kaya, and J. Ofengand, “Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli,” RNA, vol. 7, no. 11, pp. 1603–1615, 2001.
[42]  T. H. Tang, N. Polacek, M. Zywicki et al., “Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus,” Molecular Microbiology, vol. 55, no. 2, pp. 469–481, 2005.
[43]  M. A. Zago, P. P. Dennis, and A. D. Omer, “The expanding world of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus,” Molecular Microbiology, vol. 55, no. 6, pp. 1812–1828, 2005.
[44]  J. Kjems and R. A. Garrett, “Novel expression of the ribosomal RNA genes in the extreme thermophile and archaebacterium Desulfurococcus mobilis,” The EMBO Journal, vol. 6, pp. 3521–3530, 1987.
[45]  J. Kjems, H. Leffers, R. A. Garrett, G. Wich, W. Leinfelder, and A. B?ck, “Gene organization, transcription signals and processing of the single ribosomal RNA operon of the archaebacterium Thermoproteus tenax,” Nucleic Acids Research, vol. 15, no. 12, pp. 4821–4835, 1987.
[46]  Q. She, R. K. Singh, F. Confalonieri, et al., “The complete genome of the crenarchaeon Sulfolobus solfataricus P2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7835–7840, 2001.
[47]  R. K. Hartmann, N. Ulbrich, and V. A. Erdmann, “An unusual rRNA operon constellation: in Thermus thermophilus HB8 the 23S/5S rRNA operon is a separate entity from the 16S rRNA operon,” Biochimie, vol. 69, no. 10, pp. 1097–1104, 1987.
[48]  C. J. Bult, O. White, G. J. Olsen, et al., “Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii,” Science, vol. 273, no. 5278, pp. 1058–1073, 1996.
[49]  H. K. Ree and R. A. Zimmermann, “Organization and expression of the 16S, 23S and 5S ribosomal RNA genes from the archaebacterium Thermoplasma acidophilum,” Nucleic Acids Research, vol. 18, no. 15, pp. 4471–4478, 1990.
[50]  E. Waters, M. J. Hohn, I. Ahel, et al., “The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12984–12988, 2003.
[51]  G. Wachtershauser, “Towards a reconstruction of ancestral genomes by gene cluster alignment,” Systematic and Applied Microbiology, vol. 21, no. 4, pp. 473–477, 1998.
[52]  J. Duan, L. Li, J. Lu, W. Wang, and K. Ye, “Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase,” Molecular Cell, vol. 34, no. 4, pp. 427–439, 2009.
[53]  J. Lykke-Andersen, C. Aagaard, M. Semionenkov, and R. A. Garrett, “Archaeal introns: splicing, intercellular mobility and evolution,” Trends in Biochemical Sciences, vol. 22, no. 9, pp. 326–331, 1997.
[54]  M. Belfort, M. E. Reaban, T. Coetzee, and J. Z. Dalgaard, “Prokaryotic introns and inteins: a panoply of form and function,” Journal of Bacteriology, vol. 177, no. 14, pp. 3897–3903, 1995.
[55]  T. H. Tang, T. S. Rozhdestvensky, B. C. d'Orval et al., “RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing,” Nucleic Acids Research, vol. 30, no. 4, pp. 921–930, 2002.
[56]  P. P. Dennis, A. Omer, and T. Lowe, “A guided tour: small RNA function in Aarchaea,” Molecular Microbiology, vol. 40, no. 3, pp. 509–519, 2001.
[57]  S. M. Ziesche, A. D. Omer, and P. P. Dennis, “RNA-guided nucleotide modification of ribosomal and non-ribosomal RNAs in Archaea,” Molecular Microbiology, vol. 54, no. 4, pp. 980–993, 2004.
[58]  A. D. Omer, S. Ziesche, W. A. Decatur, M. J. Fournier, and P. P. Dennis, “RNA-modifying machines in archaea,” Molecular Microbiology, vol. 48, no. 3, pp. 617–629, 2003.
[59]  P. P. Dennis and A. Omer, “Small non-coding RNAs in Archaea,” Current Opinion in Microbiology, vol. 8, no. 6, pp. 685–694, 2005.
[60]  J. Ni, A. L. Tien, and M. J. Fournier, “Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA,” Cell, vol. 89, no. 4, pp. 565–573, 1997.
[61]  A. D. Omer, T. M. Lowe, A. G. Russell, H. Ebhardt, S. R. Eddy, and P. P. Dennis, “Homologs of small nucleolar RNAs in Archaea,” Science, vol. 288, no. 5465, pp. 517–522, 2000.
[62]  R. J. Klein, Z. Misulovin, and S. R. Eddy, “Noncoding RNA genes identified in AT-rich hyperthermophiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7542–7547, 2002.
[63]  C. Gaspin, J. Cavaillé, G. Erauso, et al., “Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes,” Journal of Molecular Biology, vol. 297, no. 4, pp. 895–906, 2000.
[64]  T. H. Tang, J. P. Bachellerie, T. Rozhdestvensky et al., “Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7536–7541, 2002.
[65]  S. Muller, F. Leclerc, I. Behm-Ansmant, J. B. Fourmann, B. Charpentier, and C. Branlant, “Combined in silico and experimental identification of the Pyrococcus abyssi H/ACA sRNAs and their target sites in ribosomal RNAs,” Nucleic Acids Research, vol. 36, no. 8, pp. 2459–2475, 2008.
[66]  L. Randau, “RNA processing in the minimal organism Nanoarchaeum equitans,” Genome Biology, vol. 13, article R63, 2012.
[67]  D. L. Bernick, P. P. Dennis, M. H?chsmann, et al., “Discovery of Pyrobaculum small RNA families with atypical pseudouridine guide RNA features,” RNA, vol. 18, pp. 402–411, 2012.
[68]  F. Bleichert, K. T. Gagnon, B. Brown, et al., “A dimeric structure for archaeal box C/D small ribonucleoproteins,” Science, vol. 325, pp. 1384–1387, 2009.
[69]  F. Bleichert and S. J. Baserga, “Ribonucleoprotein multimers and their functions,” Critical Reviews in Biochemistry and Molecular Biology, vol. 45, no. 5, pp. 331–350, 2010.
[70]  T. Moore, Y. Zhang, M. O. Fenley, and H. Li, “Molecular basis of box C/D RNA-protein interactions: cocrystal structure of archaeal L7Ae and a box C/D RNA,” Structure, vol. 12, no. 5, pp. 807–818, 2004.
[71]  D. J. Klein, T. M. Schmeing, P. B. Moore, and T. A. Steitz, “The kink-turn: a new RNA secondary structure motif,” The EMBO Journal, vol. 20, no. 15, pp. 4214–4221, 2001.
[72]  S. Nolivos, A. J. Carpousis, and B. Clouet-d'Orval, “The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn,” Nucleic Acids Research, vol. 33, no. 20, pp. 6507–6514, 2005.
[73]  E. Tran, X. Zhang, L. Lackey, and E. S. Maxwell, “Conserved spacing between the box C/D and C′/D′ RNPs of the archaeal box C/D sRNP complex is required for efficient 2′-O-methylation of target RNAs,” RNA, vol. 11, no. 3, pp. 285–293, 2005.
[74]  H. Wang, D. Boisvert, K. K. Kim, R. Kim, and S. H. Kim, “Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 ? resolution,” The EMBO Journal, vol. 19, no. 3, pp. 317–323, 2000.
[75]  J. F. Kuhn, E. J. Tran, and E. S. Maxwell, “Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein,” Nucleic Acids Research, vol. 30, no. 4, pp. 931–941, 2002.
[76]  T. S. Rozhdestvensky, T. H. Tang, I. V. Tchirkova, J. Brosius, J. P. Bachellerie, and A. Hüttenhofer, “Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea,” Nucleic Acids Research, vol. 31, no. 3, pp. 869–877, 2003.
[77]  M. Aittaleb, R. Rashid, Q. Chen, J. R. Palmer, C. J. Daniels, and H. Li, “Structure and function of archaeal box C/D sRNP core proteins,” Nature Structural Biology, vol. 10, no. 4, pp. 256–263, 2003.
[78]  R. Rashid, M. Aittaleb, Q. Chen, K. Spiegel, B. Demeler, and H. Li, “Functional requirement for symmetric assembly of archaeal box C/D small ribonucleoprotein particles,” Journal of Molecular Biology, vol. 333, no. 2, pp. 295–306, 2003.
[79]  E. J. Tran, X. Zhang, and E. S. Maxwell, “Efficient RNA 2′-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C′/D′ RNPs,” The EMBO Journal, vol. 22, no. 15, pp. 3930–3940, 2003.
[80]  M. Aittaleb, T. Visone, M. O. Fenley, and H. Li, “Structural and thermodynamic evidence for a stabilizing role of Nop5p in S-adenosyl-L-methionine binding to fibrillarin,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 41822–41829, 2004.
[81]  X. Zhang, E. A. Champion, E. J. Tran, B. A. Brown, S. J. Baserga, and E. Stuart Maxwell, “The coiled-coil domain of the Nop56/58 core protein is dispensable for sRNP assembly but is critical for archaeal box C/D sRNP-guided nucleotide methylation,” RNA, vol. 12, no. 6, pp. 1092–1103, 2006.
[82]  J. W. Hardin and R. T. Batey, “The bipartite architecture of the sRNA in an archaeal box C/D complex is a primary determinant of specificity,” Nucleic Acids Research, vol. 34, no. 18, pp. 5039–5051, 2006.
[83]  A. D. Omer, M. Zago, A. Chang, and P. P. Dennis, “Probing the structure and function of an archaeal C/D-box methylation guide sRNA,” RNA, vol. 12, no. 9, pp. 1708–1720, 2006.
[84]  S. Oruganti, Y. Zhang, H. Li et al., “Alternative conformations of the archaeal Nop56/58-fibrillarin complex imply flexibility in box C/D RNPs,” Journal of Molecular Biology, vol. 371, no. 5, pp. 1141–1150, 2007.
[85]  C. D. Appel and E. S. Maxwell, “Structural features of the guide:target RNA duplex required for archaeal box C/D sRNA-guided nucleotide 2′-O-methylation,” RNA, vol. 13, no. 6, pp. 899–911, 2007.
[86]  K. Ye, R. Jia, J. Lin et al., “Structural organization of box C/D RNA-guided RNA methyltransferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13808–13813, 2009.
[87]  S. Xue, R. Wang, F. Yang et al., “Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle,” Molecular Cell, vol. 39, no. 6, pp. 939–949, 2010.
[88]  K. T. Gagnon, X. Zhang, G. Qu et al., “Signature amino acids enable the archaeal L7Ae box C/D RNP core protein to recognize and bind the K-loop RNA motif,” RNA, vol. 16, no. 1, pp. 79–90, 2010.
[89]  F. Bleichert and S. J. Baserga, “Dissecting the role of conserved box C/D sRNA sequences in di-sRNP assembly and function,” Nucleic Acids Research, vol. 38, no. 22, pp. 8295–8305, 2010.
[90]  K. T. Gagnon, S. Biswas, X. Zhang, et al., “Structurally conserved Nop56/58 N-terminal domain facilitates archaeal box C/D ribonucleoprotein-guided methyltransferase activity,” The Journal of Biological Chemistry, vol. 287, no. 23, pp. 19418–19428, 2012.
[91]  J. L. Martin and F. M. McMillan, “SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold,” Current Opinion in Structural Biology, vol. 12, no. 6, pp. 783–793, 2002.
[92]  D. Tollervey, H. Lehtonen, R. Jansen, H. Kern, and E. C. Hurt, “Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly,” Cell, vol. 72, no. 3, pp. 443–457, 1993.
[93]  H. Ghalei, H. H. Hsiao, H. Urlaub, M. C. Wahl, and N. J. Watkins, “A novel Nop5-sRNA interaction that is required for efficient archaeal box C/D sRNP formation,” RNA, vol. 16, no. 12, pp. 2341–2348, 2010.
[94]  M. Terns and R. Terns, “Noncoding RNAs of the H/ACA family,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 71, pp. 395–405, 2006.
[95]  N. J. Watkins and M. T. Bohnsack, “The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA,” Wiley Interdisciplinary Reviews. RNA, vol. 3, no. 3, pp. 397–414, 2012.
[96]  T. Hamma and A. R. Ferré-D'Amaré, “Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 ? resolution,” Structure, vol. 12, no. 5, pp. 893–903, 2004.
[97]  E. V. Koonin, “Pseudouridine syntheses: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases,” Nucleic Acids Research, vol. 24, no. 12, pp. 2411–2415, 1996.
[98]  I. K. Blaby, M. Majumder, K. Chatterjee et al., “Pseudouridine formation in archaeal RNAs: the case of Haloferax volcanii,” RNA, vol. 17, no. 7, pp. 1367–1380, 2011.
[99]  D. L. J. Lafontaine, C. Bousquet-Antonelli, Y. Henry, M. Caizergues-Ferrer, and D. Tollervey, “The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase,” Genes & Development, vol. 12, no. 4, pp. 527–537, 1998.
[100]  T. Hamma, S. L. Reichow, G. Varani, and A. R. Ferré-D'Amaré, “The Cbf5-Nop10 complex is a molecular bracket that organizes box H/ACA RNPs,” Nature Structural and Molecular Biology, vol. 12, no. 12, pp. 1101–1107, 2005.
[101]  L. Li and K. Ye, “Crystal structure of an H/ACA box ribonucleoprotein particle,” Nature, vol. 443, no. 7109, pp. 302–307, 2006.
[102]  X. Manival, C. Charron, J. B. Fourmann, F. Godard, B. Charpentier, and C. Branlant, “Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity,” Nucleic Acids Research, vol. 34, no. 3, pp. 826–839, 2006.
[103]  R. Rashid, B. Liang, D. L. Baker et al., “Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita,” Molecular Cell, vol. 21, no. 2, pp. 249–260, 2006.
[104]  B. Liang, J. Zhou, E. Kahen, R. M. Terns, M. P. Terns, and H. Li, “Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA,” Nature Structural and Molecular Biology, vol. 16, no. 7, pp. 740–746, 2009.
[105]  B. Liang, S. Xue, R. M. Terns, M. P. Terns, and H. Li, “Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex,” Nature Structural and Molecular Biology, vol. 14, no. 12, pp. 1189–1195, 2007.
[106]  A. K. Henras, J. Soudet, M. Gérus et al., “The post-transcriptional steps of eukaryotic ribosome biogenesis,” Cellular and Molecular Life Sciences, vol. 65, no. 15, pp. 2334–2359, 2008.
[107]  K. R. Phipps, J. M. Charette, and S. J. Baserga, “The small subunit processome in ribosome biogenesis—progress and prospects,” WIREs RNA, vol. 2, no. 1, pp. 1–21, 2011.
[108]  M. Beltrame and D. Tollervey, “Identification and functional analysis of two U3 binding sites on yeast pre-ribosomal RNA,” The EMBO Journal, vol. 11, no. 4, pp. 1531–1542, 1992.
[109]  M. Beltrame and D. Tollervey, “Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis,” The EMBO Journal, vol. 14, no. 17, pp. 4350–4356, 1995.
[110]  A. Méreau, R. Fournier, A. Grégoire et al., “An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA,” Journal of Molecular Biology, vol. 273, no. 3, pp. 552–571, 1997.
[111]  A. V. Borovjagin and S. A. Gerbi, “The spacing between functional Cis-elements of U3 snoRNA is critical for rRNA processing,” Journal of Molecular Biology, vol. 300, no. 1, pp. 57–74, 2000.
[112]  A. V. Borovjagin and S. A. Gerbi, “Xenopus U3 snoRNA GAC-box A′ and box A sequences play distinct functional roles in rRNA processing,” Molecular and Cellular Biology, vol. 21, no. 18, pp. 6210–6221, 2001.
[113]  D. A. Samarsky and M. J. Fournier, “Functional mapping of the U3 small nucleolar RNA from the yeast Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 18, no. 6, pp. 3431–3444, 1998.
[114]  P. P. Dennis, A. G. Russell, and M. Moniz De Sá, “Formation of the 5′ end pseudoknot in small subunit ribosomal RNA: involvement of U3-like sequences,” RNA, vol. 3, no. 4, pp. 337–343, 1997.
[115]  R. J. W. Schoemaker and A. P. Gultyaev, “Computer simulation of chaperone effects of Archaeal C/D box sRNA binding on rRNA folding,” Nucleic Acids Research, vol. 34, no. 7, pp. 2015–2026, 2006.
[116]  X. H. Liang, Q. Liu, and M. J. Fournier, “Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing,” RNA, vol. 15, no. 9, pp. 1716–1728, 2009.
[117]  Y. Zebarjadian, T. King, M. J. Fournier, L. Clarke, and J. Carbon, “Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA,” Molecular and Cellular Biology, vol. 19, no. 11, pp. 7461–7472, 1999.
[118]  S. Higa-Nakamine, T. Suzuki, T. Uechi, et al., “Loss of ribosomal RNA modification causes developmental defects in zebrafish,” Nucleic Acids Research, pp. 1–8, 2011.
[119]  X. H. Liang, Q. Liu, and M. J. Fournier, “rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity,” Molecular Cell, vol. 28, no. 6, pp. 965–977, 2007.
[120]  B. Liu, X. H. Liang, D. Piekna-Przybylska, Q. Liu, and M. J. Fournier, “Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity,” RNA Biology, vol. 5, no. 4, pp. 249–254, 2008.
[121]  S. C. Blanchard and J. D. Puglisi, “Solution structure of the A loop of 23S ribosomal RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 3720–3725, 2001.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133