Objectives. To investigate associations of selected single-nucleotide polymorphisms (SNPs) in ADAM12 gene with radiographic knee osteoarthritis (rKOA) in Estonian population. Methods. The rs3740199, rs1871054, rs1278279, and rs1044122 SNPs in ADAM12 gene were genotyped in 438 subjects (303 women) from population-based cohort, aged 32 to 57 (mean 45.4). The rKOA features were evaluated in the tibiofemoral joint (TFJ) and patellofemoral joint. Results. The early rKOA was found in 51.4% of investigated subjects (72% women) and 12.3% of participants (63% women) had advanced stage of diseases. The A allele of synonymous SNP rs1044122 was associated with early rKOA in TFJ, predominantly with the presence of osteophytes in females (OR 1.57; 95% CI 1.08–2.29, ). The C allele of intron polymorphism rs1871054 carried risk for advanced rKOA, mostly to osteophyte formation in TFJ in males (OR 3.03; 95% CI 1.11–7.53, ). Also the CCAA haplotype of ADAM12 was associated with osteophytosis, again mostly in TFJ in males ( ). For rs3740199 and rs1278279, no statistically significant associations were observed. Conclusion.??ADAM12 gene variants are related to rKOA risk during the early and late stages of diseases. The genetic risk seems to be predominantly associated with the appearance of osteophytes—a marker of bone remodelling and neochondrogenesis. 1. Introduction Osteoarthritis (OA) is the most common joint disorder and represents a leading musculoskeletal health and socioeconomic burden [1]. The knee is one of the most affected sites [2]. Among recognized OA risk factors like age and overweight, the genetic background, as demonstrated in twins, is expected to play the significant role [3]. To date, several genomewide linkage analyses (GWAS) and numerous association studies of candidate genes have been performed to disclose genetic pattern of OA [4]. Despite promising evidence, only few genes like GDF5 and SMAD3 demonstrated proven susceptibility to OA [5] and these genes, in turn, interpret only a small part of the genetic contribution to the disease. Until now, promising but contradictory data are published for the association of a member of disintegrin and metalloproteinase family—ADAM12 with the pathogenesis of OA [6, 7]. ADAM12 is an active proteinase, which is highly expressed in remodelling and fast-growing tissues such as the placenta and malignant tumours [8]. One of the splice variant of ADAM12 was found to be overexpressed in human OA cartilage [9], and recently, we described the elevation of ADAM12 protein in serum of OA patients [10]. Additionally, one
References
[1]
A. Litwic, M. H. Edwards, E. M. Dennison, and C. Cooper, “Epidemiology and burden of osteoarthritis,” British Medical Bulletin, 2013.
[2]
G. Peat, R. McCarney, and P. Croft, “Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care,” Annals of the Rheumatic Diseases, vol. 60, no. 2, pp. 91–97, 2001.
[3]
A. J. MacGregor and T. D. Spector, “Twins and the genetic architecture of osteoarthritis,” Rheumatology, vol. 38, no. 7, pp. 583–588, 1999.
[4]
E. Jakkula, “Defects in the genes coding for cartilage extracellular matrix proteins as a cause of osteoarthritis and multiple epiphyseal dysplasia,” Acta Universitatis Ouluensis Medica, D832, Oulu, Finland, 2005, http://herkules.oulu.fi/isbn9514277333/isbn9514277333.pdf.
[5]
L. N. Reynard and J. Loughlin, “Genetics and epigenetics of osteoarthritis,” Maturitas, vol. 71, no. 3, pp. 200–204, 2012.
[6]
A. M. Valdes, D. J. Hart, K. A. Jones et al., “Association study of candidate genes for the prevalence and progression of knee osteoarthritis,” Arthritis & Rheumatism, vol. 50, no. 8, pp. 2497–22507, 2004.
[7]
K. L. Limer, K. Tosh, S. R. Bujac et al., “Attempt to replicate published genetic associations in a large, well-defined osteoarthritis case-control population (the GOAL study),” Osteoarthritis and Cartilage, vol. 17, no. 6, pp. 782–789, 2009.
[8]
N. M. Hooper and U. Lendeckel, The ADAM Family of Proteases, Springer, New York, NY, USA, 2005.
[9]
A. Okada, S. Mochizuki, T. Yatabe et al., “ADAM-12 (Meltrin α) is involved in chondrocyte proliferation via cleavage of insulin-like growth factor binding protein 5 in osteoarthritic cartilage,” Arthritis and Rheumatism, vol. 58, no. 3, pp. 778–789, 2008.
[10]
I. Kerna, K. Kisand, P. Laitinen et al., “Association of ADAM12-S protein with radiographic features of knee osteoarthritis and bone and cartilage markers,” Rheumatology International, vol. 32, no. 2, pp. 519–523, 2012.
[11]
A. M. Valdes, M. Doherty, and T. D. Spector, “The additive effect of individual genes in predicting risk of knee osteoarthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 1, pp. 124–127, 2008.
[12]
Y. Nagaosa, M. Mateus, B. Hassan, P. Lanyon, and M. Doherty, “Development of a logically devised line drawing atlas for grading of knee osteoarthritis,” Annals of the Rheumatic Diseases, vol. 59, no. 8, pp. 587–595, 2000.
[13]
S. W. M. John, G. Weitzner, R. Rozen, and C. R. Scriver, “A rapid procedure for extracting genomic DNA from leukocytes,” Nucleic Acids Research, vol. 19, no. 2, p. 408, 1991.
S. R. Narum, “Beyond Bonferroni: less conservative analyses for conservation genetics,” Conservation Genetics, vol. 7, no. 5, pp. 783–787, 2006.
[16]
“Population Diversity for rs3740199, rs1871054, rs1044122, rs1278279,” population HapMap-CEU, http://www.ncbi.nlm.nih.gov/SNP/snp_viewTable.cgi?pop=1409.
[17]
A. M. Valdes, M. Van Oene, D. J. Hart et al., “Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women,” Arthritis and Rheumatism, vol. 54, no. 2, pp. 533–539, 2006.
[18]
Quanto Software, 2012, http://hydra.usc.edu/gxe/.
[19]
I. Meulenbelt, “Osteoarthritis year 2011 in review: genetics,” Osteoarthritis and Cartilage, vol. 20, no. 2, pp. 218–222.
[20]
H. Takahashi, M. Nakajima, K. Ozaki, T. Tanaka, N. Kamatani, and S. Ikegawa, “Prediction model for knee osteoarthritis based on genetic and clinical information,” Arthritis Research & Therapys, vol. 12, no. 5, article R187, 2010.
[21]
M.-H. Shin, S.-J. Lee, S.-J. Kee et al., “Genetic association analysis of GDF5 and ADAM12 for knee osteoarthritis,” Joint Bone Spine, vol. 79, no. 5, pp. 488–491, 2012.
[22]
I. Kerna, K. Kisand, A. E. Tamm, M. Lintrop, K. Veske, and A. O. Tamm, “Missense single nucleotide polymorphism of the ADAM12 gene is associated with radiographic knee osteoarthritis in middle-aged Estonian cohort,” Osteoarthritis and Cartilage, vol. 17, no. 8, pp. 1093–1098, 2009.
[23]
P. M. van der Kraan and W. B. van den Berg, “Osteophytes: relevance and biology,” Osteoarthritis and Cartilage, vol. 15, no. 3, pp. 237–244, 2007.
[24]
E. Abe, H. Mocharla, T. Yamate, Y. Taguchi, and S. C. Manolagas, “Meltrin-α, a fusion protein involved in multinucleated giant cell and osteoclast formation,” Calcified Tissue International, vol. 64, no. 6, pp. 508–515, 1999.
[25]
V. B. Kraus, “Osteoarthritis year 2010 in review: biochemical markers,” Osteoarthritis and Cartilage, vol. 19, no. 4, pp. 346–353, 2011.