全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Renin Angiotensin System in Cognitive Function and Dementia

DOI: 10.1155/2013/102602

Full-Text   Cite this paper   Add to My Lib

Abstract:

Angiotensin II represents a key molecule in hypertension and cerebrovascular pathology. By promoting inflammation and oxidative stress, enhanced Ang II levels accelerate the onset and progression of cell senescence. Sustained activation of RAS promotes end-stage organ injury associated with aging and results in cognitive impairment and dementia. The discovery of the angiotensin-converting enzyme ACE2-angiotensin (1–7)-Mas receptor axis that exerts vasodilator, antiproliferative, and antifibrotic actions opposed to those of the ACE-Ang II-AT1 receptor axis has led to the hypothesis that a decrease in the expression or activity of angiotensin (1–7) renders the systems more susceptible to the pathological actions of Ang II. Given the successful demonstration of beneficial effects of increased expression of ACE2/formation of Ang1–7/Mas receptor binding and modulation of Mas expression in animal models in containing cerebrovascular pathology in hypertensive conditions and aging, one could reasonably hope for analogous effects regarding the prevention of cognitive decline by protecting against hypertension and cerebral microvascular damage. Upregulation of ACE2 and increased balance of Ang 1–7/Ang II, along with positive modulation of Ang II signaling through AT2 receptors and Ang 1–7 signaling through Mas receptors, may be an appropriate strategy for improving cognitive function and treating dementia. 1. Cognition and Dementia Cognition is a general term that refers to all mental processes, such as perception, thinking, memory, movement, attention, emotions, ability to understand the intentions and thoughts of other people, decision making, and self-awareness. Anecdotal evidence of age-related decline in cognitive functions is amply supported by a wealth of objective data. Mild cognitive impairment (MCI) is a widely used term to indicate a syndrome characterized by a mild memory or cognitive impairment that cannot be accounted for by any recognized medical or psychiatric conditions [1]. The general criteria for MCI require a subjective complaint of memory loss, an objective impairment of memory function for age and education (1 or 2 SD below the mean score of the examined sample) assessed by formal neuropsychological testing, with no evidence of dementia, but preservation of intact activities of daily living and other cognitive domains [1]. In contrast to MCI, a diagnosis of dementia is made when cognitive impairment is greater than that found in normal aging and it affects two or more cognitive domains that comprise orientation, attention, verbal linguistic

References

[1]  R. C. Petersen, “Aging, mild cognitive impairment, and Alzheimer's disease,” Neurologic Clinics, vol. 18, no. 4, pp. 789–805, 2000.
[2]  P. J. Whitehouse, C. G. Sciulli, and R. M. Mason, “Dementia drug development: use of information systems to harmonize global drug development,” Psychopharmacology Bulletin, vol. 33, no. 1, pp. 129–133, 1997.
[3]  A. Cherubini, D. T. Lowenthal, E. Paran, P. Mecocci, L. S. Williams, and U. Senin, “Hypertension and cognitive function in the elderly,” American Journal of Therapeutics, vol. 14, no. 6, pp. 533–554, 2007.
[4]  A. Del Parigi, F. Panza, C. Capurso, and V. Solfrizzi, “Nutritional factors, cognitive decline, and dementia,” Brain Research Bulletin, vol. 69, no. 1, pp. 1–19, 2006.
[5]  R. Andel, T. F. Hughes, and M. Crowe, “Strategies to reduce the risk of cognitive decline and dementia,” Aging Health, vol. 1, pp. 107–116, 2005.
[6]  F. M. Faraci and D. D. Heistad, “Regulation of large cerebral arteries and cerebral microsvascular pressure,” Circulation Research, vol. 66, no. 1, pp. 8–17, 1990.
[7]  Y. Nishimura, T. Ito, and J. M. Saavedra, “Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats,” Stroke, vol. 31, no. 10, pp. 2478–2486, 2000.
[8]  P. V. Vaitkevicius, J. L. Fleg, J. H. Engel et al., “Effects of age and aerobic capacity on arterial stiffness in healthy adults,” Circulation, vol. 88, no. 4 I, pp. 1456–1462, 1993.
[9]  R. W. Alexander, “Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the mediation of arterial inflammatory response: a new perspective,” Hypertension, vol. 25, no. 2, pp. 155–161, 1995.
[10]  S. Phillips and J. Whisnant, “Hypertension and stroke,” in Hypertension: Pathophysiology, Diagnosis, and Management, J. Laragh and B. Brenner, Eds., pp. 417–431, Raven Press, New York, NY, USA, 2nd edition, 1990.
[11]  S. Strandgaard and O. B. Paulson, “Cerebrovascular consequences of hypertension,” The Lancet, vol. 344, no. 8921, pp. 519–521, 1994.
[12]  M. I. Phillips and E. M. De Oliveira, “Brain renin angiotensin in disease,” Journal of Molecular Medicine, vol. 86, no. 6, pp. 715–722, 2008.
[13]  E. Savaskan, “The role of the brain renin-angiotensin system in neurodegenerative disorders,” Current Alzheimer Research, vol. 2, no. 1, pp. 29–35, 2005.
[14]  L. A. Cassis, J. Saye, and M. J. Peach, “Location and regulation of rat angiotensinogen messenger RNA,” Hypertension, vol. 11, no. 6, pp. 591–596, 1988.
[15]  V. J. Dzau, J. Ingelfinger, R. E. Pratt, and K. E. Ellison, “Identification of renin and angiotensinogen messenger RNA sequences in mouse and rat brains,” Hypertension, vol. 8, no. 6, pp. 544–548, 1986.
[16]  J. L. Lavoie, M. D. Cassell, K. W. Gross, and C. D. Sigmund, “Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model,” Physiological Genomics, vol. 16, pp. 240–246, 2004.
[17]  J. L. Lavoie, M. D. Cassell, K. W. Gross, and C. D. Sigmund, “Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model,” Hypertension, vol. 43, no. 5, pp. 1116–1119, 2004.
[18]  M. A. Lee-Kirsch, F. Gaudet, M. C. Cardoso, and K. Lindpaintner, “Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing,” Circulation Research, vol. 84, no. 2, pp. 240–246, 1999.
[19]  C. Fischer-Ferraro, V. E. Nahmod, D. J. Goldstein, and S. Finkielman, “Angiotensin and renin in rat and dog brain,” Journal of Experimental Medicine, vol. 133, no. 2, pp. 353–361, 1971.
[20]  E. T. Ben-Ari and J. C. Garrison, “Regulation of angiotensinogen mRNA accumulation in rat hepatocytes,” American Journal of Physiology, vol. 255, no. 1, pp. E70–E79, 1988.
[21]  C. F. Deschepper, J. Bouhnik, and W. F. Ganong, “Colocalization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain,” Brain Research, vol. 374, no. 1, pp. 195–198, 1986.
[22]  P. Sandor and W. de Jong, “Brain peptides and catecholamines in cardiovascular regulation,” in Brain Peptides and Catecholamines in Cardiovascular Regulation, J. P. Buckley and C. M. Ferrario, Eds., p. 185, Raven Press, New York, NY, USA, 1987.
[23]  D. I. Diz, “Approaches to establishing angiotensin II as a neurotransmitter revisited,” Hypertension, vol. 47, no. 3, pp. 334–336, 2006.
[24]  R. W. Lind, L. W. Swanson, and D. Ganten, “Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study,” Neuroendocrinology, vol. 40, no. 1, pp. 2–24, 1985.
[25]  M. Paul, M. P. Printz, and E. Harms, “Localization of renin (EC 3.4.23) and converting enzyme (EC 3.4.15.1) in nerve endings of rat brain,” Brain Research, vol. 334, no. 2, pp. 315–324, 1985.
[26]  K. E. Bernstein, B. M. Martin, A. S. Edwards, and E. A. Bernstein, “Mouse angiotensin-converting enzyme is a protein composed of two homologous domains,” Journal of Biological Chemistry, vol. 264, no. 20, pp. 11945–11951, 1989.
[27]  V. Beldent, A. Michaud, C. Bonnefoy, M.-T. Chauvet, and P. Corvol, “Cell surface localization of proteolysis of human endothelial angiotensin I-converting enzyme. Effect of the amino-terminal domain in the solubilization process,” Journal of Biological Chemistry, vol. 270, no. 48, pp. 28962–28969, 1995.
[28]  I. A. Reid, B. J. Morris, and W. F. Ganong, “The renin-angiotensin system,” Annual Review of Physiology, vol. 40, pp. 377–410, 1978.
[29]  M. I. Phillips, “Functions of angiotensin in the central nervous system,” Annual Review of Physiology, vol. 49, pp. 413–435, 1987.
[30]  A. Kuoppala, K. A. Lindstedt, J. Saarinen, P. T. Kovanen, and J. O. Kokkonen, “Inactivation of bradykinin by angiotensin-converting enzyme and by carboxypeptidase N in human plasma,” American Journal of Physiology, vol. 278, no. 4, pp. H1069–H1074, 2000.
[31]  R. L. Davisson, M. I. Oliverio, T. M. Coffman, and C. D. Sigmund, “Divergent functions of angiotensin II receptor isoforms in the brain,” Journal of Clinical Investigation, vol. 106, no. 1, pp. 103–106, 2000.
[32]  R. M. Carey, “Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age,” Hypertension, vol. 45, no. 5, pp. 840–844, 2005.
[33]  R. M. Carey and S. H. Padia, “Angiotensin AT2 receptors: control of renal sodium excretion and blood pressure,” Trends in Endocrinology and Metabolism, vol. 19, no. 3, pp. 84–87, 2008.
[34]  L. Gao, W. Wang, W. Wang, H. Li, C. Sumners, and I. H. Zucker, “Effects of angiotensin type 2 receptor overexpression in the rostral ventrolateral medulla on blood pressure and urine excretion in normal rats,” Hypertension, vol. 51, no. 2, pp. 521–527, 2008.
[35]  V. J. Dzau, “Cell biology and genetics of angiotensin in cardiovascular disease,” Journal of Hypertension, vol. 12, no. 4, supplement, pp. S3–S10, 1994.
[36]  R. K. Bickerton and J. P. Buckley, “Evidence for a central mechanism in angiotensin induced hypertension,” in Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine, pp. 834–836, Royal Society of Medicine, New York, NY, USA, 1961.
[37]  A. N. Epstein, J. T. Fitzsimons, and B. J. Rolls, “Drinking induced by injection of angiotensin into the rain of the rat,” Journal of Physiology, vol. 210, no. 2, pp. 457–474, 1970.
[38]  D. Ganten, A. Marquez-Julio, P. Granger et al., “Renin in dog brain,” The American Journal of Physiology, vol. 221, no. 6, pp. 1733–1737, 1971.
[39]  D. R. Gehlert, S. L. Gackenheimer, and D. A. Schober, “Autoradiographic localization of subtypes of angiotensin II antagonist binding in the rat brain,” Neuroscience, vol. 44, no. 2, pp. 501–514, 1991.
[40]  O. Johren, T. Inagami, and J. M. Saavedra, “AT(1A), AT(1B), and AT2 angiotensin II receptor subtype gene expression in rat brain,” NeuroReport, vol. 6, no. 18, pp. 2549–2552, 1995.
[41]  D. R. Gehlert, R. C. Speth, and J. K. Wamsley, “Distribution of [125I]angiotensin II binding sites in the rat brain: a quantitative autoradiographic study,” Neuroscience, vol. 18, no. 4, pp. 837–856, 1986.
[42]  O. J?hren, T. Inagami, and J. M. Saavedra, “Localization of AT2 angiotensin II receptor gene expression in rat brain by in situ hybridization histochemistry,” Molecular Brain Research, vol. 37, no. 1-2, pp. 192–200, 1996.
[43]  Z. Lenkei, M. Palkovits, P. Corvol, and C. Llorens-Cortes, “Distribution of angiotensin II type-2 receptor (AT2) mRNA expression in the adult rat brain,” Journal of Comparative Neurology, vol. 373, pp. 322–339, 1996.
[44]  M. I. Phillips, L. Shen, E. M. Richards, and M. K. Raizada, “Immunohistochemical mapping of angiotensin AT1 receptors in the brain,” Regulatory Peptides, vol. 44, no. 2, pp. 95–107, 1993.
[45]  L. P. Reagan, L. M. Flanagan-Cato, D. K. Yee, L.-Y. Ma, R. R. Sakai, and S. J. Fluharty, “Immunohistochemical mapping of angiotensin type 2 (AT2) receptors in rat brain,” Brain Research, vol. 662, no. 1-2, pp. 45–59, 1994.
[46]  N. E. Sirett, A. S. McLean, J. J. Bray, and J. I. Hubbard, “Distribution of angiotensin II receptors in rat brain,” Brain Research, vol. 122, no. 2, pp. 299–312, 1977.
[47]  K. Song, A. M. Allen, G. Paxinos, and F. A. O. Mendelsohn, “Mapping of angiotensin II receptor subtype heterogeneity in rat brain,” Journal of Comparative Neurology, vol. 316, no. 4, pp. 467–484, 1992.
[48]  W. H?user, O. J?hren, and J. M. Saavedra, “Characterization and distribution of angiotensin II receptor subtypes in the mouse brain,” European Journal of Pharmacology, vol. 348, no. 1, pp. 101–114, 1998.
[49]  O. J?hren, H. Imboden, W. H?user, I. Maye, G. L. Sanvitto, and J. M. Saavedra, “Localization of angiotensin-converting enzyme, angiotensin II, angiotensin II receptor subtypes, and vasopressin in the mouse hypothalamus,” Brain Research, vol. 757, no. 2, pp. 218–227, 1997.
[50]  Z. Lenkei, M. Palkovits, P. Corvol, and C. Llorens-Cortès, “Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review,” Frontiers in Neuroendocrinology, vol. 18, no. 4, pp. 383–439, 1997.
[51]  D. F. Story and J. Ziogas, “Interaction of angiotensin with noradrenergic neuroeffector transmission,” Trends in Pharmacological Sciences, vol. 8, no. 7, pp. 269–271, 1987.
[52]  P. R. Saxena, “Interaction between the renin-angiotensin-aldosterone and sympathetic nervous systems,” Journal of Cardiovascular Pharmacology, vol. 19, no. 6, pp. S80–S88, 1992.
[53]  G. Giacchetti, G. Opocher, R. Sarzani, A. Rappelli, and F. Mantero, “Angiotensin II and the adrenal,” Clinical and Experimental Pharmacology and Physiology, vol. 23, no. 3, supplement, pp. S119–S124, 1996.
[54]  G. Aguilera and A. Kiss, “Regulation of the hypothalmic-pituitary-adrenal axis and vasopressin secretion: role of angiotensin II,” Advances in Experimental Medicine and Biology, vol. 396, pp. 105–112, 1996.
[55]  J. Culman, S. Hohle, F. Qadri et al., “Angiotensin as neuromodulator/neurotransmitter in central control of body fluid and electrolyte homeostasis,” Clinical and Experimental Hypertension, vol. 17, no. 1-2, pp. 281–293, 1995.
[56]  H. Urata, H. Nishimura, and D. Ganten, “Mechanisms of angiotensin II formation in humans,” European Heart Journal, vol. 16, pp. 79–85, 1995.
[57]  H. Urata, H. Nishimura, D. Ganten, and K. Arakawa, “Angiotensin-converting enzyme-independent pathways of angiotensin II formation in human tissues and cardiovascular diseases,” Blood Pressure, Supplement, vol. 5, no. 2, pp. 22–28, 1996.
[58]  P. Schelling, J. S. Hutchinson, and U. Ganten, “Impermeability of the blood cerebrospinal fluid barrier for angiotensin II in rats,” Clinical Science and Molecular Medicine, vol. 51, no. 3, supplement, pp. 399–402, 1976.
[59]  H. M. Duvernoy and P.-Y. Risold, “The circumventricular organs: an atlas of comparative anatomy and vascularization,” Brain Research Reviews, vol. 56, no. 1, pp. 119–147, 2007.
[60]  A. K. Johnson and P. M. Gross, “Sensory circumventricular organs and brain homeostatic pathways,” FASEB Journal, vol. 7, no. 8, pp. 678–686, 1993.
[61]  J. B. Simpson, “The circumventricular organs and the central actions of angiotensin,” Neuroendocrinology, vol. 32, no. 4, pp. 248–256, 1981.
[62]  J. M. Saavedra, “Brain and pituitary angiotensin,” Endocrine Reviews, vol. 13, no. 2, pp. 329–380, 1992.
[63]  J. M. Saavedra, “Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities,” Cellular and Molecular Neurobiology, vol. 25, no. 3-4, pp. 485–512, 2005.
[64]  J. M. Saavedra, H. Ando, I. Armando et al., “Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists,” Regulatory Peptides, vol. 128, no. 3, pp. 227–238, 2005.
[65]  K. Yanai, T. Saito, Y. Kakinuma et al., “Renin-dependent cardiovascular functions and renin-independent blood-brain barrier functions revealed by renin-deficient mice,” Journal of Biological Chemistry, vol. 275, no. 1, pp. 5–8, 2000.
[66]  Y. Kakinuma, H. Hama, F. Sugiyama et al., “Impaired blood-brain barrier function in angiotensinogen-deficient mice,” Nature Medicine, vol. 4, no. 9, pp. 1078–1080, 1998.
[67]  J. M. Rose and K. L. Audus, “At1 receptors mediate angiotensin II uptake and transport by bovine brain microvessel endothelial cells in primary culture,” Journal of Cardiovascular Pharmacology, vol. 33, no. 1, pp. 30–35, 1999.
[68]  J. W. Harding, M. J. Sullivan, J. M. Hanesworth, L. L. Cushing, and J. W. Wright, “Inability of [125I]Sar1,Ile8-angiotensin II to move between the blood and cerebrospinal fluid compartments,” Journal of Neurochemistry, vol. 50, no. 2, pp. 554–557, 1988.
[69]  J. Monti, M. Schinke, M. B?hm, D. Ganten, M. Bader, and G. Bricca, “Glial angiotensinogen regulates brain angiotensin II receptors in transgenic rats TGR(ASrAOGE),” American Journal of Physiology, vol. 280, no. 1, pp. R233–R240, 2001.
[70]  A. Réaux, N. De Mota, S. Zini et al., “PC18, a specific aminopeptidase N inhibitor, induces vasopressin release by increasing the half-life of brain Angiotensin III,” Neuroendocrinology, vol. 69, no. 5, pp. 370–376, 1999.
[71]  A. Reaux, M. C. Fournie-Zaluski, C. David et al., “Aminopeptidase A inhibitors as potential central antihypertensive agents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13415–13420, 1999.
[72]  S. Zini, M.-C. Fournie-Zaluski, E. Chauvel, B. P. Roques, P. Corvol, and C. Llorens-Cortes, “Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11968–11973, 1996.
[73]  G. N. Swanson, J. M. Hanesworth, M. F. Sardinia et al., “Discovery of a distinct binding site for angiotensin II (3–8), a putative angiotensin IV receptor,” Regulatory Peptides, vol. 40, no. 3, pp. 409–419, 1992.
[74]  S. Y. Chai, M. A. Bastias, E. F. Clune et al., “Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualised by in vitro receptor autoradiography,” Journal of Chemical Neuroanatomy, vol. 20, no. 3-4, pp. 339–348, 2000.
[75]  A. V. Miller-Wing, J. M. Hanesworth, M. F. Sardinia et al., “Central angiotensin IV binding sites: distribution and specificity in guinea pig brain,” Journal of Pharmacology and Experimental Therapeutics, vol. 266, no. 3, pp. 1718–1726, 1993.
[76]  I. Moeller, S. Y. Chai, B. J. Oldfield, M. J. McKinley, D. Casley, and F. A. O. Mendelsohn, “Localization of angiotensin IV binding sites to motor and sensory neurons in the sheep spinal cord and hindbrain,” Brain Research, vol. 701, no. 1-2, pp. 301–306, 1995.
[77]  I. Moeller, G. Paxinos, F. A. O. Mendelsohn, G. P. Aldred, D. Casley, and S. Y. Chai, “Distribution of AT4 receptors in the Macaca fascicularis brain,” Brain Research, vol. 712, no. 2, pp. 307–324, 1996.
[78]  K. A. Roberts, L. T. Krebs, E. A. Kramar, M. J. Shaffer, J. W. Harding, and J. W. Wright, “Autoradiographic identification of brain angiotensin IV binding sites and differential c-Fos expression following intracerebroventricular injection of angiotensin II and IV in rats,” Brain Research, vol. 682, no. 1-2, pp. 13–21, 1995.
[79]  A. L. Albiston, S. G. McDowall, D. Matsacos et al., “Evidence that the angiotensin IV (AT4) receptor is the enzyme insulin-regulated aminopeptidase,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 48623–48626, 2001.
[80]  S. R. Tipnis, N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner, “A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase,” Journal of Biological Chemistry, vol. 275, no. 43, pp. 33238–33243, 2000.
[81]  A. J. Turner, S. R. Tipnis, J. L. Guy, G. I. Rice, and N. M. Hooper, “ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors,” Canadian Journal of Physiology and Pharmacology, vol. 80, no. 4, pp. 346–353, 2002.
[82]  C. Vickers, P. Hales, V. Kaushik et al., “Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14838–14843, 2002.
[83]  M. Donoghue, F. Hsieh, E. Baronas et al., “A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9,” Circulation Research, vol. 87, no. 5, pp. E1–9, 2000.
[84]  F. Gembardt, A. Sterner-Kock, H. Imboden et al., “Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents,” Peptides, vol. 26, no. 7, pp. 1270–1277, 2005.
[85]  D. Harmer, M. Gilbert, R. Borman, and K. L. Clark, “Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme,” FEBS Letters, vol. 532, no. 1-2, pp. 107–110, 2002.
[86]  I. Hamming, W. Timens, M. L. C. Bulthuis, A. T. Lely, G. J. Navis, and H. van Goor, “Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis,” Journal of Pathology, vol. 203, no. 2, pp. 631–637, 2004.
[87]  P. E. Gallagher, M. C. Chappell, C. M. Ferrario, and E. A. Tallant, “Distinct roles for ANG II and ANG-(1–7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes,” American Journal of Physiology, vol. 290, no. 2, pp. C420–C426, 2006.
[88]  M. F. Doobay, L. S. Talman, T. D. Obr, X. Tian, R. L. Davisson, and E. Lazartigues, “Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system,” American Journal of Physiology, vol. 292, no. 1, pp. R373–R381, 2007.
[89]  Z. Lin, Y. Chen, W. Zhang, A. F. Chen, S. Lin, and M. Morris, “RNA interference shows interactions between mouse brainstem angiotensin AT1 receptors and angiotensin-converting enzyme 2,” Experimental Physiology, vol. 93, no. 5, pp. 676–684, 2008.
[90]  W. R. Welches, K. B. Brosnihan, and C. M. Ferrario, “A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11,” Life Sciences, vol. 52, no. 18, pp. 1461–1480, 1993.
[91]  M. C. Chappell, K. B. Brosnihan, D. I. Diz, and C. M. Ferrario, “Identification of angiotensin-(1–7) in rat brain. Evidence for differential processing of angiotensin peptides,” Journal of Biological Chemistry, vol. 264, no. 28, pp. 16518–16523, 1989.
[92]  J. L. Guy, D. W. Lambert, F. J. Warner, N. M. Hooper, and A. J. Turner, “Membrane-associated zinc peptidase families: comparing ACE and ACE2,” Biochimica et Biophysica Acta, vol. 1751, no. 1, pp. 2–8, 2005.
[93]  M. C. Chappell, N. T. Pirro, A. Sykes, and C. M. Ferrario, “Metabolism of angiotensin-(1–7) by angiotensin-converting enzyme,” Hypertension, vol. 31, no. 1, pp. 362–367, 1998.
[94]  A. J. Allred, D. I. Diz, C. M. Ferrario, and M. C. Chappell, “Pathways for angiotensin-(1–7) metabolism in pulmonary and renal tissues,” American Journal of Physiology, vol. 279, no. 5, pp. F841–F850, 2000.
[95]  W. C. Probst, L. A. Snyder, D. I. Schuster, J. Brosius, and S. C. Sealfon, “Sequence alignment of the G-protein coupled receptor superfamily,” DNA and Cell Biology, vol. 11, no. 1, pp. 1–20, 1992.
[96]  B. Bunnemann, K. Fuxe, R. Metzger et al., “Autoradiographic localization of mas proto-oncogene mRNA in adult rat brain using in situ hybridization,” Neuroscience Letters, vol. 114, no. 2, pp. 147–153, 1990.
[97]  K. A. Martin, S. G. N. Grant, and S. Hockfield, “The mas proto-oncogene is developmentally regulated in the rat central nervous system,” Developmental Brain Research, vol. 68, no. 1, pp. 75–82, 1992.
[98]  R. Metzger, M. Bader, T. Ludwig, C. Berberich, B. Bunnemann, and D. Ganten, “Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues,” FEBS Letters, vol. 357, no. 1, pp. 27–32, 1995.
[99]  D. Young, K. O'Neill, T. Jessell, and M. Wigler, “Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 14, pp. 5339–5342, 1988.
[100]  L. K. Becker, G. M. Etelvino, T. Walther, R. A. S. Santos, and M. J. Campagnole-Santos, “Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain,” American Journal of Physiology, vol. 293, no. 3, pp. H1416–H1424, 2007.
[101]  K. A. Martin and S. Hockfield, “Expression of the mas proto-oncogene in the rat hippocampal formation is regulated by neuronal activity,” Molecular Brain Research, vol. 19, no. 4, pp. 303–309, 1993.
[102]  P. Pagliaro and C. Penna, “Rethinking the renin-angiotensin system and its role in cardiovascular regulation,” Cardiovascular Drugs and Therapy, vol. 19, no. 1, pp. 77–87, 2005.
[103]  Y. Yagil and C. Yagil, “Congenics in the pathway from quantitative trait loci detection to gene identification: is that the way to go?” Journal of Hypertension, vol. 21, no. 11, pp. 2009–2011, 2003.
[104]  M. A. Crackower, R. Sarao, G. Y. Oudit et al., “Angiotensin-converting enzyme 2 is an essential regulator of heart function,” Nature, vol. 417, no. 6891, pp. 822–828, 2002.
[105]  M. Igase, W. B. Strawn, P. E. Gallagher, R. L. Geary, and C. M. Ferrario, “Angiotensin II at1 receptors regulate ACE2 and angiotensin-(1–7) expression in the aorta of spontaneously hypertensive rats,” American Journal of Physiology, vol. 289, no. 3, pp. H1013–H1019, 2005.
[106]  B. Tom, A. Dendorfer, and A. H. Jan Danser, “Bradykinin, angiotensin-(1–7), and ACE inhibitors: how do they interact?” International Journal of Biochemistry and Cell Biology, vol. 35, no. 6, pp. 792–801, 2003.
[107]  C. M. Ferrario, M. C. Chappell, E. A. Tallant, K. B. Brosnihan, and D. I. Diz, “Counterregulatory actions of angiotensin-(1–7),” Hypertension, vol. 30, no. 3, pp. 535–541, 1997.
[108]  R. A. S. Santos, M. J. Campagnole-Santos, and S. P. Andrade, “Angiotensin-(1–7): an update,” Regulatory Peptides, vol. 91, no. 1–3, pp. 45–62, 2000.
[109]  E. A. Tallant, D. I. Diz, and C. M. Ferrario, “Antiproliferative actions of angiotensin-(1–7) in vascular smooth muscle,” Hypertension, vol. 34, no. 4, pp. 950–957, 1999.
[110]  J. Buggy, S. Huot, M. Pamnani, and F. Haddy, “Periventricular forebrain mechanisms for blood pressure regulation,” Federation Proceedings, vol. 43, no. 1, pp. 25–31, 1984.
[111]  G. D. Fink, C. A. Bruner, and M. L. Mangiapane, “Area postrema is critical for angiotensin-induced hypertension in rats,” Hypertension, vol. 9, no. 4, pp. 355–361, 1987.
[112]  J. S. Gutkind, M. Kurihara, E. Castren, and J. M. Saavedra, “Increased concentration of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats,” Journal of Hypertension, vol. 6, no. 1, pp. 79–84, 1988.
[113]  R. Gyurko, D. Wielbo, and M. I. Phillips, “Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin,” Regulatory Peptides, vol. 49, no. 2, pp. 167–174, 1993.
[114]  P. Ambühl, R. Gyurko, and M. I. Phillips, “A decrease in angiotensin receptor binding in rat brain nuclei by antisense oligonucleotides to the angiotensin AT1 receptor,” Regulatory Peptides, vol. 59, no. 2, pp. 171–182, 1995.
[115]  J. C. Falcon II, M. I. Phillips, W. E. Hoffman, and M. J. Brody, “Effects of intraventricular angiotensin II mediated by the sympathetic nervous system,” The American Journal of Physiology, vol. 235, no. 4, pp. H392–399, 1978.
[116]  A. Blume, T. Herdegen, and T. Unger, “Angiotensin peptides and inducible transcription factors,” Journal of Molecular Medicine, vol. 77, no. 3, pp. 339–357, 1999.
[117]  T. Unger, W. Rascher, and C. Schuster, “Central blood pressure effects of substance P and angiotensin II: role of the sympathetic nervous system and vasopressin,” European Journal of Pharmacology, vol. 71, no. 1, pp. 33–42, 1981.
[118]  W. McDonald, C. Wickre, and S. Aumann, “The sustained antihypertensive effect of chronic cerebroventricular infusion of angiotensin antagonist in spontaneously hypertensive rats,” Endocrinology, vol. 107, no. 5, pp. 1305–1308, 1980.
[119]  T. Okuno, S. Nagahama, M. D. Lindheimer, and S. Oparil, “Attenuation of the development of spontaneous hypertension in rats by chronic central administration of captopril,” Hypertension, vol. 5, no. 5 I, pp. 653–662, 1983.
[120]  K. Hermann, W. McDonald, and T. Unger, “Angiotensin biosynthesis and concentrations in brain of normotensive and hypertensive rats,” Journal de Physiologie, vol. 79, no. 6, pp. 471–480, 1984.
[121]  R. Casto and M. I. Phillips, “Angiotensin II attenuates baroreflexes at nucleus tractus solitarius of rats,” American Journal of Physiology, vol. 250, no. 2, pp. R193–R198, 1986.
[122]  K. Tamura, S. Umemura, N. Nyui et al., “Tissue-specific regulation of angiotensinogen gene expression in spontaneously hypertensive rats,” Hypertension, vol. 27, no. 6, pp. 1216–1223, 1996.
[123]  M. W. Chapleau and F. M. Abboud, “Neuro-Cardiovascular Regulation: from molecules to man: introduction,” Annals of the New York Academy of Sciences, vol. 940, pp. 13–22, 2001.
[124]  K. Tsutsumi and J. M. Saavedra, “Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain,” American Journal of Physiology, vol. 261, no. 1, pp. R209–R216, 1991.
[125]  H. Ando, J. Zhou, M. Macova, H. Imboden, and J. M. Saavedra, “Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats,” Stroke, vol. 35, no. 7, pp. 1726–1731, 2004.
[126]  J. M. Barnes, N. M. Barnes, B. Costall et al., “Angiotensin II inhibits acetylcholine release from human temporal cortex: implications for cognition,” Brain Research, vol. 507, no. 2, pp. 341–343, 1990.
[127]  O. Von Bohlen Und Halbach and D. Albrecht, “Angiotensin II inhibits long-term potentiation within the lateral nucleus of the amygdala through AT1 receptors,” Peptides, vol. 19, no. 6, pp. 1031–1036, 1998.
[128]  A. G. Karczmar, “Brief presentation of the story and present status of studies of the vertebrate cholinergic system,” Neuropsychopharmacology, vol. 9, no. 3, pp. 181–199, 1993.
[129]  D. Albrecht, M. Broser, H. Krüger, and M. Bader, “Effects of angiotensin II and IV on geniculate activity in nontransgenic and transgenic rats,” European Journal of Pharmacology, vol. 332, no. 1, pp. 53–63, 1997.
[130]  J. W. Wright and J. W. Harding, “The brain RAS and Alzheimer's disease,” Experimental Neurology, vol. 223, no. 2, pp. 326–333, 2010.
[131]  J. J. Braszko, “AT2 but not AT1 receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats,” Behavioural Brain Research, vol. 131, no. 1-2, pp. 79–86, 2002.
[132]  D. S. Kerr, L. R. M. Bevilaqua, J. S. Bonini et al., “Angiotensin II blocks memory consolidation through an AT2 receptor-dependent mechanism,” Psychopharmacology, vol. 179, no. 3, pp. 529–535, 2005.
[133]  W. Bild, L. Hritcu, A. Ciobica, V. Artenie, and I. Haulica, “P02-170 Comparative effects of captopril, losartan and PD123319 on the memory processes in rats,” European Psychiatry, vol. 24, p. S860, 2009.
[134]  J. S. Bonini, L. R. Bevilaqua, C. G. Zinn et al., “Angiotensin II disrupts inhibitory avoidance memory retrieval,” Hormones and Behavior, vol. 50, no. 2, pp. 308–313, 2006.
[135]  P. W. Landfield and S. A. Deadwyler, Long-Term Potentiation from Biophysics to Behavior, Liss, New York, NY, USA, 1988.
[136]  G. Lynch, M. Kessler, A. Arai, and J. Larson, “The nature and causes of hippocampal long-term potentiation,” Progress in Brain Research, vol. 83, pp. 233–250, 1990.
[137]  R. D. Traub and R. Miles, Neuronal Networks of the Hippocampus, Cambridge University Press, 1991.
[138]  J. Storm-Mathisen, J. Zimmer, and O. P. Ottersen, “Understanding the brain through the hippocampus: preface,” Progress in Brain Research, vol. 83, pp. 1–457, 1990.
[139]  J. W. Wright, E. A. Kramár, S. E. Meighan, and J. W. Harding, “Extracellular matrix molecules, long-term potentiation, memory consolidation and the brain angiotensin system,” Peptides, vol. 23, no. 1, pp. 221–246, 2002.
[140]  G. Massicotte and M. Baudry, “Triggers and substrates of hippocampal synaptic plasticity,” Neuroscience and Biobehavioral Reviews, vol. 15, no. 3, pp. 415–423, 1991.
[141]  N. M. Barnes, B. Costall, M. E. Kelly, D. A. Murphy, and R. J. Naylor, “Cognitive enhancing actions of PD 123177 detected in a mouse habituation paradigm,” NeuroReport, vol. 2, no. 6, pp. 351–353, 1991.
[142]  N. M. Barnes, S. Champaneria, B. Costall, M. E. Kelly, D. A. Murphy, and R. J. Naylor, “Cognitive enhancing actions of DuP 753 detected in a mouse habituation paradigm,” NeuroReport, vol. 1, no. 3-4, pp. 239–242, 1990.
[143]  N. M. Barnes, B. Costall, M. E. Kelly, D. A. Murphy, and R. J. Naylor, “Anxiolytic-like action of DuP753, a non-peptide angiotensin II receptor antagonist,” NeuroReport, vol. 1, no. 1, pp. 20–21, 1990.
[144]  M. M. Akhavan, M. Emami-Abarghoie, B. Sadighi-Moghaddam, M. Safari, Y. Yousefi, and A. Rashidy-Pour, “Hippocampal angiotensin II receptors play an important role in mediating the effect of voluntary exercise on learning and memory in rat,” Brain Research, vol. 1232, pp. 132–138, 2008.
[145]  O. Von Bohlen Und Halbach and D. Albrecht, “The CNS renin-angiotensin system,” Cell and Tissue Research, vol. 326, no. 2, pp. 599–616, 2006.
[146]  J. Tchekalarova and D. Albrecht, “Angiotensin II suppresses long-term depression in the lateral amygdala of mice via L-type calcium channels,” Neuroscience Letters, vol. 415, no. 1, pp. 68–72, 2007.
[147]  V. Raghavendra, K. Chopra, and S. K. Kulkarni, “Brain renin angiotensin system (RAS) in stress-induced analgesia and impaired retention,” Peptides, vol. 20, no. 3, pp. 335–342, 1999.
[148]  L. Mateos, M.-A. Ismail, B. Winblad, and A. Cedazo-Mínguez, “Side-chain-oxidized oxysterols upregulate ACE2 and mas receptor in rat primary neurons,” Neurodegenerative Diseases, vol. 10, no. 1–4, pp. 313–316, 2012.
[149]  J. Ellul, N. Archer, C. M. L. Foy et al., “The effects of commonly prescribed drugs in patients with Alzheimer's disease on the rate or deterioration,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 3, pp. 233–239, 2007.
[150]  J. M. Barnes, N. M. Barnes, B. Costall et al., “Angiotensin-converting enzyme inhibition, angiotensin, and cognition,” Journal of Cardiovascular Pharmacology, vol. 19, no. 6, supplement, pp. S63–S71, 1992.
[151]  K. Shah, S. U. Qureshi, M. Johnson, N. Parikh, P. E. Schulz, and M. E. Kunik, “Does use of antihypertensive drugs affect the incidence or progression of dementia? A systematic review,” American Journal Geriatric Pharmacotherapy, vol. 7, no. 5, pp. 250–261, 2009.
[152]  T. Walther, J.-P. Voigt, A. Fukamizu, H. Fink, and M. Bader, “Learning and anxiety in angiotensin-deficient mice,” Behavioural Brain Research, vol. 100, no. 1-2, pp. 1–4, 1999.
[153]  T. C. Lee, D. Greene-Schloesser, and V. Payne, “Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment,” Radiation Research, vol. 178, pp. 46–56, 2012.
[154]  Y.-F. Dong, K. Kataoka, Y. Tokutomi et al., “Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer's disease,” FASEB Journal, vol. 25, no. 9, pp. 2911–2920, 2011.
[155]  B. Maul, O. Von Bohlen Und Halbach, A. Becker et al., “Impaired spatial memory and altered dendritic spine morphology in angiotensin II type 2 receptor-deficient mice,” Journal of Molecular Medicine, vol. 86, no. 5, pp. 563–571, 2008.
[156]  K. Kazama, J. Anrather, P. Zhou et al., “Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals,” Circulation Research, vol. 95, no. 10, pp. 1019–1026, 2004.
[157]  Y. Wei, A. T. Whaley-Connell, K. Chen et al., “NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat,” Hypertension, vol. 50, no. 2, pp. 384–391, 2007.
[158]  N.-C. Li, A. Lee, R. A. Whitmer et al., “Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis,” British Medical Journal, vol. 340, no. 7738, p. 141, 2010.
[159]  S. Inaba, M. Iwai, M. Furuno et al., “Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice,” Hypertension, vol. 53, no. 2, pp. 356–362, 2009.
[160]  S. Takeda, N. Sato, D. Takeuchi et al., “Angiotensin receptor blocker prevented β-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling,” Hypertension, vol. 54, no. 6, pp. 1345–1352, 2009.
[161]  K. Kume, H. Hanyu, H. Sakurai, Y. Takada, T. Onuma, and T. Iwamoto, “Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer's disease,” Geriatrics and Gerontology International, vol. 12, no. 2, pp. 207–214, 2012.
[162]  R. Mechaeil, P. Gard, A. Jackson, and J. Rusted, “Cognitive enhancement following acute losartan in normotensive young adults,” Psychopharmacology, vol. 217, no. 1, pp. 51–60, 2011.
[163]  K. Reinecke, R. Lucius, A. Reinecke, U. Rickert, T. Herdegen, and T. Unger, “Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB,” The FASEB Journal, vol. 17, no. 14, pp. 2094–2096, 2003.
[164]  L. Gendron, L. Laflamme, N. Rivard, C. Asselin, M. D. Payet, and N. Gallo-Payet, “Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21(ras) and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells,” Molecular Endocrinology, vol. 13, no. 9, pp. 1615–1626, 1999.
[165]  F. C?té, L. Laflamme, M. D. Payet, and N. Gallo-Payet, “Nitric oxide, a new second messenger involved in the action of angiotensin II on neuronal differentiation of NG108-15 cells,” Endocrine Research, vol. 24, no. 3-4, pp. 403–407, 1998.
[166]  M. Mogi and M. Horiuchi, “Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases,” Geriatrics & Gerontology International, vol. 13, no. 1, pp. 13–18, 2013.
[167]  F. Jing, M. Mogi, A. Sakata et al., “Direct stimulation of angiotensin II type 2 receptor enhances spatial memory,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 2, pp. 248–255, 2012.
[168]  L. Hritcu, W. Bild, A. Ciobica, V. Artenie, and I. Haulica, “P02-169 Behavioral changes induced by angiotensin AT1 receptors blockade in the rat brain,” European Psychiatry, vol. 24, p. S859, 2009.
[169]  A. Chalas and E. L. Conway, “No evidence for involvement of angiotensin II in spatial learning in water maze in rats,” Behavioural Brain Research, vol. 81, no. 1-2, pp. 199–205, 1996.
[170]  P. R. Gard, “The role of angiotensin II in cognition and behaviour,” European Journal of Pharmacology, vol. 438, no. 1-2, pp. 1–14, 2002.
[171]  V. J. DeNoble, K. F. DeNoble, K. R. Spencer, A. T. Chiu, P. C. Wong, and P. B. M. W. M. Timmermans, “Non-peptide angiotensin II receptor antagonist and angiotensin-converting enzyme inhibitor: effect on a renin-induced deficit of a passive avoidance response in rats,” Brain Research, vol. 561, no. 2, pp. 230–235, 1991.
[172]  K. Hellner, T. Walther, M. Schubert, and D. Albrecht, “Angiotensin-(1–7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas,” Molecular and Cellular Neuroscience, vol. 29, no. 3, pp. 427–435, 2005.
[173]  Y.-F. Dong, K. Kataoka, K. Toyama et al., “Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion,” Hypertension, vol. 58, no. 4, pp. 635–642, 2011.
[174]  M. Mogi, K. Tsukuda, J.-M. Li et al., “Inhibition of cognitive decline in mice fed a high-salt and cholesterol diet by the angiotensin receptor blocker, olmesartan,” Neuropharmacology, vol. 53, no. 8, pp. 899–905, 2007.
[175]  K. Tsukuda, M. Mogi, J.-M. Li et al., “Amelioration of cognitive impairment in the type-2 diabetic mouse by the angiotensin II type-1 receptor blocker candesartan,” Hypertension, vol. 50, no. 6, pp. 1099–1105, 2007.
[176]  A. S. Awad, “Role of AT1 receptors in permeability of the blood-brain barrier in diabetic hypertensive rats,” Vascular Pharmacology, vol. 45, no. 3, pp. 141–147, 2006.
[177]  N. Hirawa, Y. Uehara, Y. Kawabata et al., “Long-term inhibition of renin-angiotensin system sustains memory function in aged Dahl rats,” Hypertension, vol. 34, no. 3, pp. 496–502, 1999.
[178]  N. Pelisch, N. Hosomi, M. Ueno et al., “Blockade of AT1 receptors protects the blood-brain barrier and improves cognition in dahl salt-sensitive hypertensive rats,” American Journal of Hypertension, vol. 24, no. 3, pp. 362–368, 2011.
[179]  M. A. Fleegal-Demotta, S. Doghu, and W. A. Banks, “Angiotensin II modulates BBB permeability via activation of the AT 1 receptor in brain endothelial cells,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 3, pp. 640–647, 2009.
[180]  R.-W. Guo, L.-X. Yang, H. Wang, B. Liu, and L. Wang, “Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-kappaB-dependent pathway in vascular smooth muscle cells,” Regulatory Peptides, vol. 147, no. 1–3, pp. 37–44, 2008.
[181]  W. Zhang, C. Smith, C. Howlett, and D. Stanimirovic, “Inflammatory activation of human brain endothelial cells by hypoxic astrocytes in vitro is mediated by IL-1β,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 6, pp. 967–978, 2000.
[182]  M. J. McKinley, A. L. Albiston, A. M. Allen et al., “The brain renin-angiotensin system: location and physiological roles,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 6, pp. 901–918, 2003.
[183]  N. M. Davies, P. G. Kehoe, Y. Ben-Shlomo, and R. M. Martin, “Associations of anti-hypertensive treatments with Alzheimer's disease, vascular dementia, and other dementias,” Journal of Alzheimer's Disease, vol. 26, no. 4, pp. 699–708, 2011.
[184]  P. G. Kehoe and G. K. Wilcock, “Is inhibition of the renin-angiotensin system a new treatment option for Alzheimer's disease?” Lancet Neurology, vol. 6, no. 4, pp. 373–378, 2007.
[185]  A. M. Sharma, J. Janke, K. Gorzelniak, S. Engeli, and F. C. Luft, “Angiotensin blockade prevents type 2 diabetes by formation of fat cells,” Hypertension, vol. 40, no. 5, pp. 609–611, 2002.
[186]  P. G. Kehoe, C. Russ, S. McIlroy et al., “Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease,” Nature Genetics, vol. 21, no. 1, pp. 71–72, 1999.
[187]  E. Savaskan, C. Hock, G. Olivieri et al., “Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia,” Neurobiology of Aging, vol. 22, no. 4, pp. 541–546, 2001.
[188]  J. S. Miners, Z. Van Helmond, P. G. Kehoe, and S. Love, “Changes with age in the activities of β-secretase and the aβ-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme,” Brain Pathology, vol. 20, no. 4, pp. 794–802, 2010.
[189]  J. S. Miners, E. Ashby, S. Baig et al., “Angiotensin-converting enzyme levels and activity in Alzheimer's disease: differences in brain and CSF ACE and association with ACE1 genotypes,” American Journal of Translational Research, vol. 1, no. 2, pp. 163–177, 2009.
[190]  P. Strazzullo, R. Iacone, L. Iacoviello et al., “Genetic variation in the renin-angiotensin system and abdominal adiposity in men: the olivetti prospective heart study,” Annals of Internal Medicine, vol. 138, no. 1, pp. 17–23, 2003.
[191]  L. A. Cassis, S. B. Police, F. Yiannikouris, and S. E. Thatcher, “Local adipose tissue renin-angiotensin system,” Current Hypertension Reports, vol. 10, no. 2, pp. 93–98, 2008.
[192]  T. Ogihara, K. Kikuchi, H. Matsuoka et al., “The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2009),” Hypertension Research, vol. 32, no. 1, pp. 3–107, 2009.
[193]  Y. Furiya, M. Ryo, M. Kawahara, T. Kiriyama, M. Morikawa, and S. Ueno, “Renin-angiotensin system blockers affect cognitive decline and serum adipocytokines in Alzheimer's disease,” Alzheimer's & Dementia, 2012.
[194]  K. Wosik, R. Cayrol, A. Dodelet-Devillers et al., “Angiotensin II controls occludin function and is required for blood-brain barrier maintenance: relevance to multiple sclerosis,” Journal of Neuroscience, vol. 27, no. 34, pp. 9032–9042, 2007.
[195]  H. K. Hamdi and R. Castellon, “A genetic variant of ACE increases cell survival: a new paradigm for biology and disease,” Biochemical and Biophysical Research Communications, vol. 318, no. 1, pp. 187–191, 2004.
[196]  T. Walther, D. Balschun, J.-P. Voigt et al., “Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene,” Journal of Biological Chemistry, vol. 273, no. 19, pp. 11867–11873, 1998.
[197]  T. Walther, J.-P. Voigt, H. Fink, and M. Bader, “Sex specific behavioural alterations in Mas-deficient mice,” Behavioural Brain Research, vol. 107, no. 1-2, pp. 105–109, 2000.
[198]  O. Von Bohlen und Halbach, T. Walther, M. Bader, and D. Albrecht, “Genetic deletion of angiotensin AT2 receptor leads to increased cell numbers in different brain structures of mice,” Regulatory Peptides, vol. 99, no. 2-3, pp. 209–216, 2001.
[199]  E. Kostenis, G. Milligan, A. Christopoulos et al., “G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor,” Circulation, vol. 111, no. 14, pp. 1806–1813, 2005.
[200]  W. O. Sampaio, C. H. De Castro, R. A. S. Santos, E. L. Schiffrin, and R. M. Touyz, “Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells,” Hypertension, vol. 50, no. 6, pp. 1093–1098, 2007.
[201]  S. H. Croog, S. Levine, and M. A. Testa, “The effects of antihypertensive therapy on the quality of life,” New England Journal of Medicine, vol. 314, no. 26, pp. 1657–1664, 1986.
[202]  M. C. Zimmerman, E. Lazartigues, R. V. Sharma, and R. L. Davisson, “Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system,” Circulation Research, vol. 95, no. 2, pp. 210–216, 2004.
[203]  Y. Feng, X. Yue, H. Xia et al., “Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation,” Circulation Research, vol. 102, no. 6, pp. 729–736, 2008.
[204]  Y. Feng, H. Xia, Y. Cai et al., “Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension,” Circulation Research, vol. 106, no. 2, pp. 373–382, 2010.
[205]  J. J. Braszko, G. Kupryszewski, B. Witczuk, and K. Wisniewski, “Angiotensin II-(3–8)-hexapeptide affects motor activity, performance of passive avoidance and a conditioned avoidance response in rats,” Neuroscience, vol. 27, no. 3, pp. 777–783, 1988.
[206]  J. W. Wright, A. V. Miller-Wing, M. J. Shaffer et al., “Angiotensin II(3–8) (ANG IV) hippocampal binding: potential role in the facilitation of memory,” Brain Research Bulletin, vol. 32, no. 5, pp. 497–502, 1993.
[207]  E. S. Pederson, J. W. Harding, and J. W. Wright, “Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog,” Regulatory Peptides, vol. 74, no. 2-3, pp. 97–103, 1998.
[208]  J. W. Wright, L. Stubley, E. S. Pederson, E. A. Kramár, J. M. Hanesworth, and J. W. Harding, “Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning,” Journal of Neuroscience, vol. 19, no. 10, pp. 3952–3961, 1999.
[209]  L. Xiao, L. Gao, E. Lazartigues, and I. H. Zucker, “Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure,” Hypertension, vol. 58, no. 6, pp. 1057–1065, 2011.
[210]  H. Zheng, X. Liu, and K. P. Patel, “Angiotensin-converting enzyme 2 over expression improves central nitric oxide-mediated sympathetic outflow in chronic heart failure,” American Journal of Physiology, vol. 301, no. 6, pp. 2402–2412, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413