Glioblastoma is a deadly brain disease and modest improvement in survival has been made. At initial diagnosis, treatment consists of maximum safe surgical resection, followed by temozolomide and chemoirradiation or adjuvant temozolomide alone. However, these treatments do not improve the prognosis and survival of patients. New treatment strategies are being sought according to the biology of tumors. The epidermal growth factor receptor has been considered as the hallmark in glioma tumors; thereby, some antibodies have been designed to bind to this receptor and block the downstream signaling pathways. Also, it is known that vascularization plays an important role in supplying new vessels to the tumor; therefore, new therapy has been guided to inhibit angiogenic growth factors in order to limit tumor growth. An innovative strategy in the treatment of glial tumors is the use of toxins produced by bacteria, which may be coupled to specific carrier-ligands and used for tumoral targeting. These carrier-ligands provide tumor-selective properties by the recognition of a cell-surface receptor on the tumor cells and promote their binding of the toxin-carrier complex prior to entry into the cell. Here, we reviewed some strategies to improve the management and treatment of glioblastoma and focused on the use of antibodies. 1. Introduction Since the “magic bullet” concept proposed by Paul Ehrlich more than one century ago in which he describes that specific recognition and elimination of pathogen organisms or malignant cells by antibodies (Abs) is possible, many types of these molecules have been developed as tools against cancer. Abs have the capacity to travel through the blood, binding to specific tumor antigens on the surface of cells or recognizing other “tumor-related” targets, blocking ligand-receptor growth signals, some survival pathways, and finally eliciting tumor cell death [1]. Neuroephitelial tumors are the most common primary intracranial tumors of the central nervous system (CNS), and, unfortunately, malignant gliomas are the most lethal type of adult brain tumors. According to the World Health Organization (WHO), the classification of malignant gliomas is based on morphological similarities of the tumor cells with nonneoplastic glial cells. Therefore, gliomas have been classified and graded on a malignant scale from I to IV as follows: astrocytic (grade I–IV), oligodendroglial (grade II-III), mixed oligoastrocytic (grade I–III), and ependymal tumors (grade I-II). Particularly, glioblastoma multiforme (GBM) is an anaplastic cellular, grade IV tumor
References
[1]
L. M. Weiner, R. Surana, and S. Wang, “Monoclonal antibodies: versatile platforms for cancer immunotherapy,” Nature Reviews Immunology, vol. 10, no. 5, pp. 317–327, 2010.
[2]
H. Ohgaki and P. Kleihues, “Genetic pathways to primary and secondary glioblastoma,” The American Journal of Pathology, vol. 170, no. 5, pp. 1445–1453, 2007.
[3]
D. A. Reardon, M. J. Egorin, A. Desjardins et al., “Phase I pharmacokinetic study of the vascular endothelial growth factor receptor tyrosine kinase inhibitor vatalanib (PTK787) plus imatinib and hydroxyurea for malignant glioma,” Cancer, vol. 115, no. 10, pp. 2188–2198, 2009.
[4]
E. R. Gerstner, A. F. Eichler, S. R. Plotkin et al., “Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide,” Journal of Neuro-Oncology, vol. 103, no. 2, pp. 325–332, 2011.
[5]
G. Neufeld, T. Cohen, S. Gengrinovitch, and Z. Poltorak, “Vascular endothelial growth factor (VEGF) and its receptors,” FASEB Journal, vol. 13, no. 1, pp. 9–22, 1999.
[6]
R. K. Jain, D. G. Duda, J. W. Clark, and J. S. Loeffler, “Lessons from phase III clinical trials on anti-VEGF therapy for cancer,” Nature Clinical Practice Oncology, vol. 3, no. 1, pp. 24–40, 2006.
[7]
H. M. Verheul and H. M. Pinedo, “The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGF-receptor kinase inhibitors,” Clinical Breast Cancer, vol. 1, supplement 1, pp. S80–84, 2000.
[8]
P. Traxler, P. R. Allegrini, R. Brandt et al., “AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity,” Cancer Research, vol. 64, no. 14, pp. 4931–4941, 2004.
[9]
E. Díaz-Rubio, “Vascular endothelial growth factor inhibitors in colon cancer,” Advances in Experimental Medicine and Biology, vol. 587, pp. 251–275, 2006.
[10]
R. J. Kreitman, “Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies,” BioDrugs, vol. 23, no. 1, pp. 1–13, 2009.
[11]
L. Greenfield, V. G. Johnson, and R. J. Youle, “Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity,” Science, vol. 238, no. 4826, pp. 536–539, 1987.
[12]
D. P. Williams, K. Parker, P. Bacha et al., “Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein,” Protein Engineering, vol. 1, no. 6, pp. 493–498, 1987.
[13]
A. Shapira and I. Benhar, “Toxin-based therapeutic approaches,” Toxins, vol. 2, no. 11, pp. 2519–2583, 2010.
[14]
C. B. Siegall, V. K. Chaudhary, D. J. FitzGerald, and I. Pastan, “Functional analysis of domains II, Ib, and III of Pseudomonas exotoxin,” Journal of Biological Chemistry, vol. 264, no. 24, pp. 14256–14261, 1989.
[15]
I. Pastan, “Immunotoxins containing Pseudomonas exotoxin A: a short history,” Cancer Immunology, Immunotherapy, vol. 52, no. 5, pp. 338–341, 2003.
[16]
R. J?rgensen, A. E. Purdy, R. J. Fieldhouse, M. S. Kimber, D. H. Bartlett, and A. R. Merrill, “Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae,” Journal of Biological Chemistry, vol. 283, no. 16, pp. 10671–10678, 2008.
[17]
R. Sarnovsky, T. Tendler, M. Makowski et al., “Initial characterization of an immunotoxin constructed from domains II and III of cholera exotoxin,” Cancer Immunology, Immunotherapy, vol. 59, no. 5, pp. 737–746, 2010.
[18]
E. S. Vitetta, P. E. Thorpe, and J. W. Uhr, “Immunotoxins: magic bullets or misguided missiles?” Immunology Today, vol. 14, no. 6, pp. 252–259, 1993.
[19]
I. Pastan, R. Hassan, D. J. FitzGerald, and R. J. Kreitman, “Immunotoxin treatment of cancer,” Annual Review of Medicine, vol. 58, pp. 221–237, 2007.
[20]
M. Mathew and R. S. Verma, “Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy,” Cancer Science, vol. 100, no. 8, pp. 1359–1365, 2009.
[21]
L. M. Budel, I. P. Touw, R. Delwel, S. C. Clark, and R. Lowenberg, “Interleukin-3 and granulocyte-monocyte colony-stimulating factor receptors on human acute myelocytic leukemia cells and relationship to the proliferative response,” Blood, vol. 74, no. 2, pp. 565–571, 1989.
[22]
R. A. Messmann, E. S. Vitetta, D. Headlee et al., “A phase I study of combination therapy with immunotoxins IgG-HD37- deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma,” Clinical Cancer Research, vol. 6, no. 4, pp. 1302–1313, 2000.
[23]
L. Herrera, B. Bostrom, L. Gore et al., “A phase 1 study of combotox in pediatric patients with refractory B-lineage acute lymphoblastic leukemia,” Journal of Pediatric Hematology/Oncology, vol. 31, no. 12, pp. 936–941, 2009.
[24]
R. Schnell, E. Vitetta, J. Schindler et al., “Clinical trials with an anti-CD25 ricin A-chain experimental and immunotoxin (RFT5-SMPT-dgA) in Hodgkin's lymphoma,” Leukemia and Lymphoma, vol. 30, no. 5-6, pp. 525–537, 1998.
[25]
R. Schnell, O. Staak, P. Borchmann et al., “A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin's and non-Hodgkin's lymphoma,” Clinical Cancer Research, vol. 8, no. 6, pp. 1779–1786, 2002.
[26]
Y. Xu, Q. Xu, M. G. Rosenblum, and D. A. Scheinberg, “Antileukemic activity of recombinant humanized M195-gelonin immunotoxin in nude mice,” Leukemia, vol. 10, no. 2, pp. 321–326, 1996.
[27]
A. Dean, M. Talpaz, H. Kantarjian et al., “Phase I clinical trial of the anti-CD33 immunotoxin HuM195/rgel in patients (pts) with advanced myeloid malignancies,” Journal of Clinical Oncology, vol. 28, 15 supplment, 2010.
[28]
E. Olsen, M. Duvic, A. Frankel et al., “Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma,” Journal of Clinical Oncology, vol. 19, no. 2, pp. 376–388, 2001.
[29]
K. Chang and I. Pastan, “Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 1, pp. 136–140, 1996.
[30]
G. Giamas, Y. L. Man, H. Hirner et al., “Kinases as targets in the treatment of solid tumors,” Cellular Signalling, vol. 22, no. 7, pp. 984–1002, 2010.
[31]
G. Carpenter and S. Cohen, “Epidermal growth factor,” Journal of Biological Chemistry, vol. 265, no. 14, pp. 7709–7712, 1990.
[32]
G. J. Wikstrand, C. J. Reist, G. E. Archer, M. R. Zalutsky, and D. D. Bigner, “The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target,” Journal of NeuroVirology, vol. 4, no. 2, pp. 148–158, 1998.
[33]
R. Nishikawa, X.-D. Ji, R. C. Harmon et al., “A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7727–7731, 1994.
[34]
H.-J. Su Huang, M. Nagane, C. K. Klingbeil et al., “The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling,” Journal of Biological Chemistry, vol. 272, no. 5, pp. 2927–2935, 1997.
[35]
Y. Zhang, F. Guessous, A. Kofman, D. Schiff, and R. Abounader, “XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC,” IDrugs, vol. 13, no. 2, pp. 112–121, 2010.
[36]
L. Frederick, X.-Y. Wang, G. Eley, and C. D. James, “Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas,” Cancer Research, vol. 60, no. 5, pp. 1383–1387, 2000.
[37]
M. M. Feldkamp, P. Lala, N. Lau, L. Roncari, and A. Guha, “Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens,” Neurosurgery, vol. 45, no. 6, pp. 1442–1453, 1999.
[38]
D. R. M. Negri, E. Tosi, O. Valota et al., “In vitro and in vivo stability and anti-tumour efficacy of an anti-EGFR/anti-CD3 F(ab')2 bispecific monoclonal antibody,” British Journal of Cancer, vol. 72, no. 4, pp. 928–933, 1995.
[39]
K. Mishima, “Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor,” Cancer Research, vol. 61, no. 14, pp. 5349–5354, 2001.
[40]
D. Patel, A. Lahiji, S. Patel et al., “Monoclonal antibody cetuximab binds to and down-regulates constitutively activated epidermal growth factor receptor vIII on the cell surface,” Anticancer Research, vol. 27, no. 5, pp. 3355–3366, 2007.
[41]
J. H. Sampson, L. E. Crotty, S. Lee et al., “Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7503–7508, 2000.
[42]
B. Neyns, J. Sadones, E. Joosens et al., “Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma,” Annals of Oncology, vol. 20, no. 9, pp. 1596–1603, 2009.
[43]
L. Moserle, A. Amadori, and S. Indraccolo, “The angiogenic switch: implications in the regulation of tumor dormancy,” Current Molecular Medicine, vol. 9, no. 8, pp. 935–941, 2009.
[44]
S. R. Wedge, J. Kendrew, L. F. Hennequin et al., “AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer,” Cancer Research, vol. 65, no. 10, pp. 4389–4400, 2005.
[45]
K. Alitalo and P. Carmeliet, “Molecular mechanisms of lymphangiogenesis in health and disease,” Cancer Cell, vol. 1, no. 3, pp. 219–227, 2002.
[46]
K. Okamoto, D. Neureiter, B. Alinger et al., “The dual EGF/VEGF receptor tyrosine kinase inhibitor AEE788 inhibits growth of human hepatocellular carcinoma xenografts in nude mice,” International Journal of Oncology, vol. 33, no. 4, pp. 733–742, 2008.
[47]
D. A. Reardon, C. A. Conrad, T. Cloughesy et al., “Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients,” Cancer Chemotherapy and Pharmacology, vol. 69, no. 6, pp. 1507–1518, 2012.
[48]
T. T. Batchelor, P. Mulholland, B. Neyns et al., “Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma,” Journal of Clinical Oncology, vol. 31, no. 26, pp. 3212–3218, 2013.
[49]
F. M. Iwamoto, K. R. Lamborn, H. I. Robins et al., “Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02),” Neuro-Oncology, vol. 12, no. 8, pp. 855–861, 2010.
[50]
D. Hanahan and J. Folkman, “Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,” Cell, vol. 86, no. 3, pp. 353–364, 1996.
[51]
K. Imai and A. Takaoka, “Comparing antibody and small-molecule therapies for cancer,” Nature Reviews Cancer, vol. 6, no. 9, pp. 714–727, 2006.
[52]
H. Glen, S. Mason, H. Patel, K. Macleod, and V. G. Brunton, “E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion,” BMC Cancer, vol. 11, article 309, 2011.
[53]
E. Bergsland, H. Hurwitx, L. Fehrenbacher, et al., “A randomized phase II trial comparing rhuMAb VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) plus 5-fluorouracil/leucovorin (FU/LV) to FU/LV alone in patients with metastatic colorectal cancer,” Proceedings of the American Society of Clinical Oncology, vol. 19, abstract 939, 2000.
[54]
M. S. Gordon, K. Margolin, M. Talpaz et al., “Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer,” Journal of Clinical Oncology, vol. 19, no. 3, pp. 843–850, 2001.
[55]
G. Sledge, K. Miller, and W. Novotny, “A phase II trial of single agent Rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) in patients with relapsed metastatic breast cancer,” Proceedings of the American Society of Clinical Oncology, vol. 19, abstract 5C, 2000.
[56]
R. F. DeVore, L. Fehrenbacher, and R. S. Herbst, “A randomized phase II trial comparing Rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage IIIB/IV NSCLC,” Proceedings of the American Society of Clinical Oncology, vol. 19, abstract 1896, 2000.
[57]
M. D. Siegelin, C. M. Raskett, C. A. Gilbert, A. H. Ross, and D. C. Altieri, “Sorafenib exerts anti-glioma activity in vitro and in vivo,” Neuroscience Letters, vol. 478, no. 3, pp. 165–170, 2010.
[58]
M. R. Gilbert, “First-line bevacizumab in combination with standard of care not recommended for newly diagnosed glioblastoma,” Proceedings of the ASCO Annual Meeting, 2013.
[59]
H.-P. Gerber, A. McMurtrey, J. Kowalski et al., “Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation,” Journal of Biological Chemistry, vol. 273, no. 46, pp. 30336–30343, 1998.
[60]
P. Traxler, G. Bold, E. Buchdunger et al., “Tyrosine kinase inhibitors: from rational design to clinical trials,” Medicinal Research Reviews, vol. 21, no. 6, pp. 499–512, 2001.
[61]
G. D. Shah, N. Loizos, H. Youssoufian, J. D. Schwartz, and E. K. Rowinsky, “Rationale for the development of IMC-3G3, a fully human immunoglobulin G subclass 1 monoclonal antibody targeting the platelet-derived growth factor receptor α,” Cancer, vol. 116, supplement, no. 4, pp. 1018–1026, 2010.
[62]
W. K. Yung, H. Friedman, E. Jackson et al., “A phase I trial of PTK787/ZK22584 (PTK/ZK), a novel oral VEGFR TK inhibitor in recurrent glioblastoma,” Proceedings of the American Society of Clinical Oncology, vol. 21, article 79a, 2002.
[63]
T. A. T. Fong, L. K. Shawver, L. Sun et al., “SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types,” Cancer Research, vol. 59, no. 1, pp. 99–106, 1999.
[64]
L. Geng, E. Donnelly, G. McMahon et al., “Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy,” Cancer Research, vol. 61, no. 6, pp. 2413–2419, 2001.
[65]
P. Vajkoczy, M. D. Menger, B. Vollmar et al., “Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy,” Neoplasia, vol. 1, no. 1, pp. 31–41, 1999.
[66]
K. Pietras, T. Sj?blom, K. Rubin, C.-H. Heldin, and A. ?stman, “PDGF receptors as cancer drug targets,” Cancer Cell, vol. 3, no. 5, pp. 439–443, 2003.
[67]
D. Matei, S. Kelich, L. Cao et al., “PDGF BB induces VEGF secretion in ovarian cancer,” Cancer Biology and Therapy, vol. 6, no. 12, pp. 1951–1959, 2007.
[68]
K. Paz and Z. Zhu, “Development of angiogenesis inhibitors to vascular endothelial growth factor receptor 2. Current status and future perspective,” Frontiers in Bioscience, vol. 10, pp. 1415–1439, 2005.
[69]
J. L. Spratlin, R. B. Cohen, M. Eadens et al., “Phase I pharmacologic and biologic study of ramucirumab (imc-1121b), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2,” Journal of Clinical Oncology, vol. 28, no. 5, pp. 780–787, 2010.
[70]
D. A. Reardon, M. D. Groves, P. Y. Wen et al., “A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma,” Clinical Cancer Research, vol. 19, no. 4, pp. 900–908, 2013.
[71]
J. Drappatz, A. D. Norden, E. T. Wong et al., “Phase I study of vandetanib with radiotherapy and temozolomide for newly diagnosed glioblastoma,” International Journal of Radiation Oncology Biology Physics, vol. 78, no. 1, pp. 85–90, 2010.
[72]
C. Wibom, M. Sandstr?m, R. Henriksson, H. Antti, M. Johansson, and A. T. Bergenheim, “Vandetanib alters the protein pattern in malignant glioma and normal brain in the BT4C rat glioma model,” International Journal of Oncology, vol. 37, no. 4, pp. 879–890, 2010.
[73]
A. A. Brandes, R. Stupp, P. Hau et al., “EORTC study 26041-22041: phase I/II study on concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT) with PTK787/ZK222584 (PTK/ZK) in newly diagnosed glioblastoma,” European Journal of Cancer, vol. 46, no. 2, pp. 348–354, 2010.
[74]
T. T. Batchelor, A. G. Sorensen, E. di Tomaso et al., “AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients,” Cancer Cell, vol. 11, no. 1, pp. 83–95, 2007.
[75]
T. T. Batchelor, D. G. Duda, E. Di Tomaso et al., “Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 17, pp. 2817–2823, 2010.
[76]
D. A. Reardon, J. J. Vredenburgh, A. Desjardins et al., “Phase 1 trial of dasatinib plus erlotinib in adults with recurrent malignant glioma,” Journal of Neuro-Oncology, vol. 108, no. 3, pp. 499–506, 2012.
[77]
M. G. McNamara and W. P. Mason, “Antiangiogenic therapies in glioblastoma multiforme,” Expert Review of Anticancer Therapy, vol. 12, no. 5, pp. 643–654, 2012.
[78]
S. Bruheim, A. Kristian, T. Uenaka et al., “Antitumour activity of oral E7080, a novel inhibitor of multiple tyrosine kinases, in human sarcoma xenografts,” International Journal of Cancer, vol. 129, no. 3, pp. 742–750, 2011.
[79]
R. H. Alvarez, H. M. Kantarjian, and J. E. Cortes, “Biology of platelet-derived growth factor and its involvement in disease,” Mayo Clinic Proceedings, vol. 81, no. 9, pp. 1241–1257, 2006.
[80]
F. Yang, C. Brown, R. Buettner et al., “Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3,” Molecular Cancer Therapeutics, vol. 9, no. 4, pp. 953–962, 2010.
[81]
J. D. Hainsworth, T. Ervin, E. Friedman et al., “Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme,” Cancer, vol. 116, no. 15, pp. 3663–3669, 2010.
[82]
R. Abounader and J. Laterra, “Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis,” Neuro-Oncology, vol. 7, no. 4, pp. 436–451, 2005.
[83]
O. Arrieta, E. Garcia, P. Guevara et al., “Hepatocyte growth factor is associated with poor prognosis of malignant gliomas and is a predictor for recurrence of meningioma,” Cancer, vol. 94, no. 12, pp. 3210–3218, 2002.
[84]
K. Lamszus, J. Laterra, M. Westphal, and E. M. Rosen, “Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas,” International Journal of Developmental Neuroscience, vol. 17, no. 5-6, pp. 517–530, 1999.
[85]
J. P. Eder, G. F. Vande Woude, S. A. Boerner, and P. M. Lorusso, “Novel therapeutic inhibitors of the c-Met signaling pathway in cancer,” Clinical Cancer Research, vol. 15, no. 7, pp. 2207–2214, 2009.
[86]
C. F. Gao and G. F. Vande Woude, “HGF/SF-Met signaling in tumor progression,” Cell Research, vol. 15, no. 1, pp. 49–51, 2005.
[87]
E. M. Rosen, J. Laterra, A. Joseph et al., “Scatter factor expression and regulation in human glial tumors,” International Journal of Cancer, vol. 67, no. 2, pp. 248–255, 1996.
[88]
S. Koochekpour, M. Jeffers, S. Rulong et al., “Met and hepatocyte growth factor/scatter factor expression in human gliomas,” Cancer Research, vol. 57, no. 23, pp. 5391–5398, 1997.
[89]
T. Moriyama, H. Kataoka, H. Kawano et al., “Comparative analysis of expression of hepatocyte growth factor and its receptor, c-met, in gliomas, meningiomas and schwannomas in humans,” Cancer Letters, vol. 124, no. 2, pp. 149–155, 1998.
[90]
N. O. Schmidt, M. Westphal, C. Hagel et al., “Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis,” International Journal of Cancer, vol. 84, no. 1, pp. 10–18, 1999.
[91]
J. Laterra, M. Nam, E. Rosen et al., “Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo,” Laboratory Investigation, vol. 76, no. 4, pp. 565–577, 1997.
[92]
B. Cao, Y. Su, M. Oskarsson et al., “Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7443–7448, 2001.
[93]
T. H. Nguyen, N. Loux, I. Dagher et al., “Improved gene transfer selectivity to hepatocarcinoma cells by retrovirus vector displaying single-chain variable fragment antibody against c-Met,” Cancer Gene Therapy, vol. 10, no. 11, pp. 840–849, 2003.
[94]
T. Martens, N.-O. Schmidt, C. Eckerich et al., “A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo,” Clinical Cancer Research, vol. 12, no. 20, pp. 6144–6152, 2006.
[95]
F. Bosch and L. Rosich, “The contributions of paul ehrlich to pharmacology: a tribute on the occasion of the centenary of his nobel prize,” Pharmacology, vol. 82, no. 3, pp. 171–179, 2008.
[96]
R. J. Kreitman, “Immunotoxins for targeted cancer therapy,” AAPS Journal, vol. 8, no. 3, article 63, pp. E532–E551, 2006.
[97]
S. Choudhary, M. Mathew, and R. S. Verma, “Therapeutic potential of anticancer immunotoxins,” Drug Discovery Today, vol. 16, no. 11-12, pp. 495–503, 2011.
[98]
W. D. Janthur, N. Cantoni, and C. Mamot, “Drug conjugates such as antibody drug conjugates (ADCs), immunotoxins and immunoliposomes challenge daily clinical practice,” International Journal of Molecular Sciences, vol. 13, no. 12, pp. 16020–16045, 2012.
[99]
R. E. Bird, K. D. Hardman, J. W. Jacobson et al., “Single-chain antigen-binding proteins,” Science, vol. 241, no. 4877, pp. 423–426, 1988.
[100]
J. S. Huston, D. Levinson, M. Mudgett-Hunter et al., “Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 16, pp. 5879–5883, 1988.
[101]
Y. Reiter, L. H. Pai, U. Brinkmann, Q.-C. Wang, and I. Pastan, “Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulfide-stabilized Fv fragment,” Cancer Research, vol. 54, no. 10, pp. 2714–2718, 1994.
[102]
A. M. Pappenheimer Jr., “Diphtheria toxin,” Annual Review of Biochemistry, vol. 46, pp. 69–94, 1977.
[103]
M. Yamaizumi, E. Mekada, T. Uchida, and Y. Okada, “One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell,” Cell, vol. 15, no. 1, pp. 245–250, 1978.
[104]
P. Boquet, M. S. Silverman, and A. M. Pappenheimer Jr., “Interaction of diphtheria toxin with mammalian cell membranes,” Progress in Clinical and Biological Research, vol. 17, pp. 501–509, 1977.
[105]
B. Varol, M. Bekta?, R. Nurten, and E. Bermek, “The cytotoxic effect of diphtheria toxin on the actin cytoskeleton,” Cellular & Molecular Biology Letters, vol. 17, no. 1, pp. 49–61, 2012.
[106]
T. F. Liu, P. D. Hall, K. A. Cohen et al., “Interstitial diphtheria toxin-epidermal growth factor fusion protein therapy produces regressions of subcutaneous human glioblastoma multiforme tumors in athymic nude mice,” Clinical Cancer Research, vol. 11, no. 1, pp. 329–334, 2005.
[107]
V. G. Johnson, D. Wilson, L. Greenfield, and R. J. Youle, “The role of the diphtheria toxin receptor in cytosol translocation,” Journal of Biological Chemistry, vol. 263, no. 3, pp. 1295–1300, 1988.
[108]
M. Weaver and D. W. Laske, “Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) therapy of malignant gliomas,” Journal of Neuro-Oncology, vol. 65, no. 1, pp. 3–13, 2003.
[109]
P. J. Nicholls and R. J. Youle, “The structure of Pseudomonas exotoxin A as a guide to rational design,” Targeted Diagnosis and Therapy, vol. 7, pp. 439–446, 1992.
[110]
T. Kondo, D. FitzGerald, V. K. Chaudhary, S. Adhya, and I. Pastan, “Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain,” Journal of Biological Chemistry, vol. 263, no. 19, pp. 9470–9475, 1988.
[111]
J. K. Batra, P. G. Kasprzyk, R. E. Bird, I. Pastan, and C. R. King, “Recombinant anti-erbB2 immunotoxins containing Pseudomonas exotoxin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 13, pp. 5867–5871, 1992.
[112]
U. Brinkmann, L. H. Pai, D. J. FitzGerald, M. Willingham, and I. Pastan, “B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 19, pp. 8616–8620, 1991.
[113]
P. C. Phillips, C. Levow, M. Catterall, O. M. Colvin, I. Pastan, and H. Brem, “Transforming growth factor-α-Pseudomonas exotoxin fusion protein (TGF- α-PE38) treatment of subcutaneous and intracranial human glioma and medulloblastoma xenografts in athymic mice,” Cancer Research, vol. 54, no. 4, pp. 1008–1015, 1994.
[114]
R. W. Rand, R. J. Kreitman, N. Patronas, F. Varricchio, I. Pastan, and R. K. Puri, “Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma,” Clinical Cancer Research, vol. 6, no. 6, pp. 2157–2165, 2000.
[115]
I. A. J. Lorimer, A. Keppler-Hafkemeyer, R. A. Beers, C. N. Pegram, D. D. Bigner, and I. Pastan, “Recombinant immunotoxins specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated by phage display,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14815–14820, 1996.
[116]
I. Pastan, R. Hassan, D. J. FitzGerald, and R. J. Kreitman, “Immunotoxin therapy of cancer,” Nature Reviews Cancer, vol. 6, no. 7, pp. 559–565, 2006.
[117]
R. J. Kreitman and I. Pastan, “Immunotoxins in the treatment of hematologic malignancies,” Current Drug Targets, vol. 7, no. 10, pp. 1301–1311, 2006.
[118]
D. A. Vallera and D. E. Myers, “Immunotoxins containing ricin,” Cancer Treatment and Research, vol. 37, pp. 141–159, 1988.
[119]
L. A. Martell, A. Agrawal, D. A. Ross, and K. M. Muraszko, “Efficacy of transferrin receptor-targeted immunotoxins in brain tumor cell lines and pediatric brain tumors,” Cancer Research, vol. 53, no. 6, pp. 1348–1353, 1993.
[120]
D. W. Laske, K. M. Muraszko, E. H. Oldfield et al., “Intraventricular immunotoxin therapy for leptomeningeal neoplasia,” Neurosurgery, vol. 41, no. 5, pp. 1039–1051, 1997.
[121]
B. D?lken, U. Giesübel, S. K. Knauer, and W. S. Wels, “Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition,” Cell Death and Differentiation, vol. 13, no. 4, pp. 576–585, 2006.
[122]
R. J. Abi-Habib, S. Liu, T. H. Bugge, S. H. Leppla, and A. E. Frankel, “A urokinase-activated recombinant diphtheria toxin targeting the granulocyte-macrophage colony-stimulating factor receptor is selectively cytotoxic to human acute myeloid leukemia blasts,” Blood, vol. 104, no. 7, pp. 2143–2148, 2004.
[123]
M. Orozco-Morales, F.-J. Sánchez-García, P. Guevara-Salazar et al., “Adjuvant immunotherapy of C6 glioma in rats with pertussis toxin,” Journal of Cancer Research and Clinical Oncology, vol. 138, no. 1, pp. 23–33, 2012.