全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pediatric Multiple Sclerosis: Current Concepts and Consensus Definitions

DOI: 10.1155/2013/673947

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the central nervous system (CNS) commonly diagnosed in adults, is being recognized increasingly in children. An estimated 1.7%–5.6% of all patients with MS have clinical symptoms before reaching the age of 18 years. In comparison with adults, the diagnosis of MS in children can be more difficult, being dismissed or misdiagnosed as other clinical disorders. Although adults and children share basic aspects of the disorder, children have distinctive clinical features, neuroimaging, laboratory, and courses of the disease. The 2010 McDonald criteria have simplified the requirements for establishing the diagnosis of MS and have been proposed to be applicable for the diagnosis of pediatric MS, mainly in children 12 years and older. This paper describes the distinctive features of common pediatric demyelinating disorders, including MS, and summarizes the most recent advances based on the available literature. 1. Introduction Multiple sclerosis (MS) is a chronic inflammatory disease of autoimmune nature, characterized by demyelination and axonal loss. MS commonly affects young adults and is considered a rare occurrence in children younger than 18 years of age. However, several studies have indicated that at least 5% of the total population with MS is composed of pediatric patients [1, 2]. Within the pediatric age group, the incidence is highest in those between 13 and 16 years of age. A small, but important, subgroup is younger than 10 years of age [3]. In 2007, an international committee proposed provisional consensus definitions that included a range of clinical and laboratory findings to facilitate unification of criteria for accurate diagnosis and to encourage and promote clinical research in pediatric demyelinating disease [4]. The original definitions have been recently reviewed and updated [5]. These unified criteria have allowed for progress to be made in the advancement of understanding the etiology, clinical manifestations, course, and neuroimaging findings of pediatric MS and other demyelinating disorders of the central nervous system (CNS). However, recognizing distinctive features of different demyelinating disorders to achieve better diagnostic certainty and optimal treatment remain challenging. 2. Demographics MS mainly affects individuals between the ages of 20 and 40 years, with a peak incidence at the age of 30 years. Population studies and case-control series show that between 1.7 and 5.6% of the MS population is younger than 18 years of age [1, 2, 6, 7] and that onset

References

[1]  P. Duquette, T. J. Murray, J. Pleines et al., “Multiple sclerosis in childhood: clinical profile in 125 patients,” Journal of Pediatrics, vol. 111, no. 3, pp. 359–363, 1987.
[2]  A. Ghezzi, V. Deplano, J. Faroni et al., “Multiple sclerosis in childhood: clinical features of 149 cases,” Multiple Sclerosis, vol. 3, no. 1, pp. 43–46, 1997.
[3]  M. Ruggieri, P. Iannetti, A. Polizzi, L. Pavone, and L. M. Grimaldi, “Multiple sclerosis in children under 10 years of age,” Neurological Sciences, vol. 25, no. 4, pp. S326–S335, 2004.
[4]  L. B. Krupp, B. Banwell, and S. Tenembaum, “International Pediatric MS Study Group, Consensus definitions proposed for pediatric multiple sclerosis and related disorders,” Neurology, vol. 68, no. 16, supplement 2, pp. S7–S12, 2007.
[5]  L. B. Krupp, M. Tardieu, M. P. Amato et al., “International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions,” Multiple Sclerosis Journal, vol. 19, no. 10, pp. 1261–1267, 2013.
[6]  O. Deryck, P. Ketelaer, and B. Dubois, “Clinical characteristics and long term prognosis in early onset multiple sclerosis,” Journal of Neurology, vol. 253, no. 6, pp. 720–723, 2006.
[7]  C. Renoux, S. Vukusic, Y. Mikaeloff et al., “Natural history of multiple sclerosis with childhood onset,” New England Journal of Medicine, vol. 356, no. 25, pp. 2603–2613, 2007.
[8]  A. Langer-Gould, J. L. Zhang, J. Chung, Y. Yeung, E. Waubant, and J. Yao, “Incidence of acquired CNS demyelinating syndromes in a multiethnic cohort of children,” Neurology, vol. 77, no. 12, pp. 1143–1148, 2011.
[9]  B. Banwell, J. Kennedy, D. Sadovnick et al., “Incidence of acquired demyelination of the CNS in Canadian children,” Neurology, vol. 72, no. 3, pp. 232–239, 2009.
[10]  I. A. Ketelslegers, C. E. Catsman-Berrevoets, R. F. Neuteboom et al., “Incidence of acquired demyelinating syndromes of the CNS in Dutch children: a nationwide study,” Journal of Neurology, vol. 259, no. 9, pp. 1929–1935, 2012.
[11]  J. Kennedy, P. O'Connor, A. D. Sadovnick, M. Perara, I. Yee, and B. Banwell, “Age at onset of multiple sclerosis may be influenced by place of residence during childhood rather than ancestry,” Neuroepidemiology, vol. 26, no. 3, pp. 162–167, 2006.
[12]  B. Banwell, A. Ghezzi, A. Bar-Or, Y. Mikaeloff, and M. Tardieu, “Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions,” Lancet Neurology, vol. 6, no. 10, pp. 887–902, 2007.
[13]  T. Chitnis, B. Glanz, S. Jaffin, and B. Healy, “Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States,” Multiple Sclerosis, vol. 15, no. 5, pp. 627–631, 2009.
[14]  E. A. Yeh, T. Chitnis, L. Krupp et al., “Pediatric multiple sclerosis,” Nature Reviews Neurology, vol. 5, no. 11, pp. 621–631, 2009.
[15]  T. Chitnis, L. Krupp, A. Yeh et al., “Pediatric Multiple Sclerosis,” Neurologic Clinics, vol. 29, no. 2, pp. 481–505, 2011.
[16]  B. K. Mehta, “New hypotheses on sunlight and the geographic variability of multiple sclerosis prevalence,” Journal of the Neurological Sciences, vol. 292, no. 1-2, pp. 5–10, 2010.
[17]  E. M. Mowry, “Vitamin D: evidence for its role as a prognostic factor in multiple sclerosis,” Journal of the Neurological Sciences, vol. 311, no. 1-2, pp. 19–22, 2011.
[18]  S. Chen, G. P. Sims, X. C. Xiao, Y. G. Yue, S. Chen, and P. E. Lipsky, “Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation,” Journal of Immunology, vol. 179, no. 3, pp. 1634–1647, 2007.
[19]  S. Simpson Jr., B. Taylor, L. Blizzard et al., “Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis,” Annals of Neurology, vol. 68, no. 2, pp. 193–203, 2010.
[20]  E. M. Mowry, L. B. Krupp, M. Milazzo et al., “Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis,” Annals of Neurology, vol. 67, no. 5, pp. 618–624, 2010.
[21]  E. M. Mowry, E. Waubant, C. E. McCulloch et al., “Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis,” Annals of Neurology Journal, vol. 72, no. 2, pp. 234–240, 2012.
[22]  A. Ascherio, K. L. Munger, E. T. Lennette et al., “Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study,” Journal of the American Medical Association, vol. 286, no. 24, pp. 3083–3088, 2001.
[23]  S. Alotaibi, J. Kennedy, R. Tellier, D. Stephens, and B. Banwell, “Epstein-Barr virus in pediatric multiple sclerosis,” Journal of the American Medical Association, vol. 291, no. 15, pp. 1875–1879, 2004.
[24]  B. Banwell, L. Krupp, J. Kennedy et al., “Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study,” Lancet Neurology, vol. 6, no. 9, pp. 773–781, 2007.
[25]  D. Pohl, B. Krone, K. Rostasy et al., “High seroprevalence of Epstein-Barr virus in children with multiple sclerosis,” Neurology, vol. 67, no. 11, pp. 2063–2065, 2006.
[26]  E. Waubant, E. M. Mowry, L. Krupp et al., “Common viruses associated with lower pediatric multiple sclerosis risk,” Neurology, vol. 76, no. 23, pp. 1989–1995, 2011.
[27]  D. Pohl, “Epstein-Barr virus and multiple sclerosis,” Journal of the Neurological Sciences, vol. 286, no. 1-2, pp. 62–64, 2009.
[28]  Y. Mikaeloff, G. Caridade, M. Rossier, S. Suissa, and M. Tardieu, “Hepatitis B vaccination and the risk of childhood-onset multiple sclerosis,” Archives of Pediatrics and Adolescent Medicine, vol. 161, no. 12, pp. 1176–1182, 2007.
[29]  Y. Mikaeloff, G. Caridade, S. Assi, M. Tardieu, and S. Suissa, “Hepatitis B vaccine and risk of relapse after a first childhood episode of CNS inflammatory demyelination,” Brain, vol. 130, part 4, pp. 1105–1110, 2007.
[30]  Y. Mikaeloff, G. Caridade, S. Suissa, and M. Tardieu, “Hepatitis B vaccine and the risk of CNS inflammatory demyelination in childhood,” Neurology, vol. 72, no. 10, pp. 873–880, 2009.
[31]  Y. Mikaeloff, G. Caridade, M. Tardieu, and S. Suissa, “Parental smoking at home and the risk of childhood-onset multiple sclerosis in children,” Brain, vol. 130, part 10, pp. 2589–2595, 2007.
[32]  D. A. Dyment, G. C. Ebers, and A. D. Sadovnick, “Genetics of multiple sclerosis,” Lancet Neurology, vol. 3, no. 2, pp. 104–110, 2004.
[33]  P. L. de Jager, X. Jia, J. Wang et al., “Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci,” Nature Genetics, vol. 41, no. 7, pp. 776–782, 2009.
[34]  T. Derfuss, C. Linington, R. Hohlfeld, and E. Meinl, “Axo-glial antigens as targets in multiple sclerosis: implications for axonal and grey matter injury,” Journal of Molecular Medicine, vol. 88, no. 8, pp. 753–761, 2010.
[35]  P. K. Stys, G. W. Zamponi, J. van Minnen, and J. J. Geurts, “Will the real multiple sclerosis please stand up?” Nature Reviews Neuroscience, vol. 13, no. 7, pp. 507–514, 2012.
[36]  K. Rostasy, E. Withut, D. Pohl et al., “Tau, phospho-tau, and S-100B in the cerebrospinal fluid of children with multiple sclerosis,” Journal of Child Neurology, vol. 20, no. 10, pp. 822–825, 2005.
[37]  T. Derfuss, K. Parikh, S. Velhin et al., “Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 20, pp. 8302–8307, 2009.
[38]  E. K. Mathey, T. Derfuss, M. K. Storch et al., “Neurofascin as a novel target for autoantibody-mediated axonal injury,” Journal of Experimental Medicine, vol. 204, no. 10, pp. 2363–2372, 2007.
[39]  E. Meinl, T. Derfuss, M. Krumbholz, A. K. Pr?bstel, and R. Hohlfeld, “Humoral autoimmunity in multiple sclerosis,” Journal of the Neurological Sciences, vol. 306, no. 1-2, pp. 180–182, 2011.
[40]  A. S. Dhaunchak, C. Becker, H. Schulman et al., “Implication of perturbed axoglial apparatus in early pediatric multiple sclerosis,” Annals of Neurology, vol. 71, no. 5, pp. 601–613, 2012.
[41]  J. M. Van Noort, M. Bsibsi, W. H. Gerritsen et al., “αB-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions,” Journal of Neuropathology and Experimental Neurology, vol. 69, no. 7, pp. 694–703, 2010.
[42]  J. L. Bennett and G. P. Owens, “Cerebrospinal fluid proteomics: a new window for understanding human demyelinating disorders?” Annals of Neurology, vol. 71, no. 5, pp. 587–588, 2012.
[43]  C. H. Polman, S. C. Reingold, B. Banwell et al., “Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria,” Annals of Neurology, vol. 69, no. 2, pp. 292–302, 2011.
[44]  R. F. Neuteboom, M. Boon, C. E. Catsman Berrevoets et al., “Prognostic factors after a first attack of inflammatory CNS demyelination in children,” Neurology, vol. 71, no. 13, pp. 967–973, 2008.
[45]  M. Wilejto, M. Shroff, J. R. Buncic, J. Kennedy, C. Goia, and B. Banwell, “The clinical features, MRI findings, and outcome of optic neuritis in children,” Neurology, vol. 67, no. 2, pp. 258–262, 2006.
[46]  L. H. Verhey, H. M. Branson, M. M. Shroff et al., “MRI parameters for prediction of multiple sclerosis diagnosis in children with acute CNS demyelination: a prospective national cohort study,” The Lancet Neurology, vol. 10, no. 12, pp. 1065–1073, 2011.
[47]  S. Bigi and B. Banwell, “Pediatric multiple sclerosis,” Journal of Child Neurology, vol. 27, no. 11, pp. 1378–1383, 2012.
[48]  G. Alper and L. Wang, “Demyelinating optic neuritis in children,” Journal of Child Neurology, vol. 24, no. 1, pp. 45–48, 2009.
[49]  R. Miyazawa, Y. Ikeuchi, T. Tomomasa, H. Ushiku, T. Ogawa, and A. Morikawa, “Determinants of prognosis of acute transverse myelitis in children,” Pediatrics International, vol. 45, no. 5, pp. 512–516, 2003.
[50]  A. T. Borchers and M. E. Gershwin, “Transverse myelitis,” Autoimmunity Reviews, vol. 11, no. 3, pp. 231–248, 2012.
[51]  F. S. Pidcock, C. Krishnan, T. O. Crawford, C. F. Salorio, M. Trovato, and D. A. Kerr, “Acute transverse myelitis in childhood: center-based analysis of 47 cases,” Neurology, vol. 68, no. 18, pp. 1474–1480, 2007.
[52]  D. Pohl and S. Tenembaum, “Treatment of acute disseminated encephalomyelitis,” Current Treatment Options in Neurology, vol. 14, no. 3, pp. 264–275, 2012.
[53]  S. Mar, J. Lenox, T. Benzinger, S. Brown, and M. Noetzel, “Long-term prognosis of pediatric patients with relapsing acute disseminated encephalomyelitis,” Journal of Child Neurology, vol. 25, no. 6, pp. 681–688, 2010.
[54]  T. E. Lotze, J. L. Northrop, G. J. Hutton, B. Ross, J. S. Schiffman, and J. V. Hunter, “Spectrum of pediatric neuromyelitis optica,” Pediatrics, vol. 122, no. 5, pp. e1039–e1047, 2008.
[55]  Y. Mikaeloff, S. Suissa, L. Vallée et al., “First episode of acute CNS inflammatory demyelination in childhood: prognostic factors for multiple sclerosis and disability,” Journal of Pediatrics, vol. 144, no. 2, pp. 246–252, 2004.
[56]  D. J. A. Callen, M. M. Shroff, H. M. Branson et al., “Role of MRI in the differentiation of ADEM from MS in children,” Neurology, vol. 72, no. 11, pp. 968–973, 2009.
[57]  D. M. Wingerchuk, “Neuromyelitis optica spectrum disorders,” CONTINUUM Lifelong Learning in Neurology, vol. 16, no. 5, pp. 105–121, 2010.
[58]  A. McKeon, V. A. Lennon, T. Lotze et al., “CNS aquaporin-4 autoimmunity in children,” Neurology, vol. 71, no. 2, pp. 93–100, 2008.
[59]  J. A. Pe?a, M. E. Ravelo, E. Mora-La Cruz, and C. Montiel-Nava, “NMO in pediatric patients: brain involvement and clinical expression,” Arquivos de Neuro-Psiquiatria, vol. 69, no. 1, pp. 34–38, 2011.
[60]  M. J. Morrow and D. Wingerchuk, “Neuromyelitis optica,” Journal of Neuro-Ophthalmology, vol. 32, no. 2, pp. 154–166, 2012.
[61]  J. M. Tillema and A. McKeon, “The spectrum of neuromyelitis optica (NMO) in childhood,” Journal of Child Neurology, vol. 27, no. 11, pp. 1437–1447, 2012.
[62]  B. Banwell, S. Tenembaum, V. A. Lennon et al., “Neuromyelitis optica-IgG in childhood inflammatory demyelinating CNS disorders,” Neurology, vol. 70, no. 5, pp. 344–352, 2008.
[63]  L. H. Verhey, E. D. van Pelt-Gravesteijnc, A. Ketelslegersc et al., “Validation of MRI predictors of multiple sclerosis diagnosis in children with acute CNS demyelination,” Multiple Sclerosis and Related Disorders, vol. 2, no. 3, pp. 193–199, 2013.
[64]  M. P. Gorman, B. C. Healy, M. Polgar-Turcsanyi, and T. Chitnis, “Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis,” Archives of Neurology, vol. 66, no. 1, pp. 54–59, 2009.
[65]  L. Julian, D. Serafin, L. Charvet et al., “Cognitive impairment occurs in children and adolescents with multiple sclerosis: results from a United States network,” Journal of Child Neurology, vol. 28, no. 1, pp. 102–107, 2013.
[66]  W. S. MacAllister, J. R. Boyd, N. J. Holland, M. C. Milazzo, and L. B. Krupp, “The psychosocial consequences of pediatric multiple sclerosis,” Neurology, vol. 68, no. 16, supplement 2, pp. S66–S69, 2007.
[67]  W. S. MacAllister, C. Christodoulou, M. Milazzo, and L. B. Krupp, “Longitudinal neuropsychological assessment in pediatric multiple sclerosis,” Developmental Neuropsychology, vol. 32, no. 2, pp. 625–644, 2007.
[68]  B. I. Glanz, B. C. Healy, L. E. Hviid, T. Chitnis, and H. L. Weiner, “Cognitive deterioration in patients with early multiple sclerosis: a 5-year study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 83, no. 1, pp. 38–43, 2012.
[69]  J. O’Mahony, A. Bar-Or, D. L. Arnold, A. D. Sadovnick, R. A. Marrie, and B. Banwell, “Masquerades of acquired demyelination in children: experiences of a national demyelinating disease program,” Journal of Child Neurology, vol. 28, no. 2, pp. 184–197, 2013.
[70]  J. S. Hahn, D. Pohl, M. Rensel, and S. Rao, “Differential diagnosis and evaluation in pediatric multiple sclerosis,” Neurology, vol. 68, no. 16, supplement 2, pp. S13–S22, 2007.
[71]  M. Twilt and S. M. Benseler, “CNS vasculitis in children,” Multiple Sclerosis and Related Disorders, vol. 2, no. 3, pp. 162–171, 2013.
[72]  L. C. McAdam, S. I. Blaser, and B. L. Banwell, “Pediatric tumefactive demyelination: case series and review of the literature,” Pediatric Neurology, vol. 26, no. 1, pp. 18–25, 2002.
[73]  D. Riva, L. Chiapparini, B. Pollo, M. R. Balestrini, M. Massimino, and N. Milani, “A case of pediatric tumefactive demyelinating lesion misdiagnosed and treated as glioblastoma,” Journal of Child Neurology, vol. 23, no. 8, pp. 944–947, 2008.
[74]  E. Waubant, D. Chabas, D. T. Okuda et al., “Difference in disease burden and activity in pediatric patients on brain magnetic resonance imaging at time of multiple sclerosis onset vs adults,” Archives of Neurology, vol. 66, no. 8, pp. 967–971, 2009.
[75]  Y. Sadaka, L. H. Verhey, M. M. Shroff et al., “2010 McDonald criteria for diagnosing pediatric multiple sclerosis,” Annals of Neurology, vol. 72, no. 2, pp. 211–223, 2012.
[76]  D. Chabas, T. Castillo-Trivino, E. M. Mowry, J. B. Strober, O. A. Glenn, and E. Waubant, “Vanishing MS T2-bright lesions before puberty: a distinct MRI phenotype?” Neurology, vol. 71, no. 14, pp. 1090–1093, 2008.
[77]  D. Chabas, J. Ness, A. Belman et al., “Younger children with MS have a distinct CSF inflammatory profile at disease onset,” Neurology, vol. 74, no. 5, pp. 399–405, 2010.
[78]  R. C. Dale, C. de Sousa, W. K. Chong, T. C. S. Cox, B. Harding, and B. G. R. Neville, “Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children,” Brain, vol. 123, no. 12, pp. 2407–2422, 2000.
[79]  A. Ghezzi, C. Pozzilli, M. Liguori et al., “Prospective study of multiple sclerosis with early onset,” Multiple Sclerosis, vol. 8, no. 2, pp. 115–118, 2002.
[80]  D. Pohl, K. Rostasy, H. Reiber, and F. Hanefeld, “CSF characteristics in early-onset multiple sclerosis,” Neurology, vol. 63, no. 10, pp. 1966–1967, 2004.
[81]  D. Pohl, K. Rostasy, S. Treiber-Held, K. Brockmann, J. G?rtner, and F. Hanefeld, “Pediatric multiple sclerosis: detection of clinically silent lesions by multimodal evoked potentials,” Journal of Pediatrics, vol. 149, no. 1, pp. 125–127, 2006.
[82]  F. Costello, S. Coupland, W. Hodge et al., “Quantifying axonal loss after optic neuritis with optical coherence tomography,” Annals of Neurology, vol. 59, no. 6, pp. 963–969, 2006.
[83]  E. Frohman, F. Costello, R. Zivadinov et al., “Optical coherence tomography in multiple sclerosis,” Lancet Neurology, vol. 5, no. 10, pp. 853–863, 2006.
[84]  E. Gordon-Lipkin, B. Chodkowski, D. S. Reich et al., “Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis,” Neurology, vol. 69, no. 16, pp. 1603–1609, 2007.
[85]  A. P. D. Henderson, S. A. Trip, P. G. Schlottmann et al., “An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography,” Brain, vol. 131, part 1, pp. 277–287, 2008.
[86]  E. A. Yeh, B. Weinstock-Guttman, N. Lincoff et al., “Retinal nerve fiber thickness in inflammatory demyelinating diseases of childhood onset,” Multiple Sclerosis, vol. 15, no. 7, pp. 802–810, 2009.
[87]  E. A. Yeh, “Management of children with multiple sclerosis,” Pediatric Drugs, vol. 14, no. 3, pp. 165–177, 2012.
[88]  A. Ghezzi, M. P. Amato, M. Capobianco et al., “Disease-modifying drugs in childhood-juvenile multiple sclerosis: results of an Italian co-operative study,” Multiple Sclerosis, vol. 11, no. 4, pp. 420–424, 2005.
[89]  E. A. Yeh, “Current therapeutic options in pediatric multiple sclerosis,” Current Treatment Options in Neurology, vol. 13, no. 6, pp. 544–559, 2011.
[90]  T. Chitnis, S. Tenembaum, B. Banwell et al., “Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis,” Multiple Sclerosis, vol. 18, no. 1, pp. 116–127, 2012.
[91]  T. Chitnis, M. Tardieu, M. P. Amato et al., “International Pediatric MS Study Group Clinical Trials Summit: meeting report,” Neurology, vol. 80, no. 12, pp. 1161–1168, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413