全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

p38 MAPK Signaling in Pemphigus: Implications for Skin Autoimmunity

DOI: 10.1155/2013/728529

Full-Text   Cite this paper   Add to My Lib

Abstract:

p38 mitogen activated protein kinase (p38 MAPK) signaling plays a major role in the modulation of immune-mediated inflammatory responses and therefore has been linked with several autoimmune diseases. The extent of the involvement of p38 MAPK in the pathogenesis of autoimmune blistering diseases has started to emerge, but whether it pays a critical role is a matter of debate. The activity of p38 MAPK has been studied in great detail during the loss of keratinocyte cell-cell adhesions and the development of pemphigus vulgaris (PV) and pemphigus foliaceus (PF). These diseases are characterised by autoantibodies targeting desmogleins (Dsg). Whether autoantibody-antigen interactions can trigger signaling pathways (such as p38 MAPK) that are tightly linked to the secretion of inflammatory mediators which may perpetuate inflammation and tissue damage in pemphigus remains unclear. Yet, the ability of p38 MAPK inhibitors to block activation of the proapoptotic proteinase caspase-3 suggests that the induction of apoptosis may be a consequence of p38 MAPK activation during acantholysis in PV. This review discusses the current evidence for the role of p38 MAPK in the pathogenesis of pemphigus. We will also present data relating to the targeting of these cascades as a means of therapeutic intervention. 1. Introduction The skin represents the first organ of the body exposed to the external environment and thus serves as the primary barrier of the immune defense system. Its key role is to maintain protection against hazardous environmental threats such as microorganisms and viruses [1, 2]. The epidermis is the outmost cellular tissue of the skin and expresses several proteins that orchestrate the essential protective functions. Inflammatory mediators such as prostaglandins, histamines, cytokines, and chemokines are synthesized and secreted from keratinocytes regulating the skin’s immune responses [3, 4]. When this epithelial barrier is compromised due to the deterioration of skin tissue integrity, patients are at high risk of fluid and electrolyte loss, as well as infection. If left untreated, conditions can be fatal. Even though the mechanisms of skin damage are essentially the same as the ones that control protective immunity and despite the evolution of sophisticated anti-inflammatory and tissue repair mechanisms, the formation of immune complexes against self-antigens (a hallmark of autoimmunity) initiates a sustained inflammatory response characterized by autoreactive immune cells, cytokines, and autoantibody production [5–8]. Pemphigus signifies a distinctive

References

[1]  F. S. Dhabhar, “Psychological stress and immunoprotection versus immunopathology in the skin,” Clinics in Dermatology, vol. 31, no. 1, pp. 18–30, 2013.
[2]  E. Moens and M. Veldhoen, “Epithelial barrier biology: good fences make good neighbours,” Immunology, vol. 135, no. 1, pp. 1–8, 2012.
[3]  R. L. Eckert, G. Adhikary, S. Balasubramanian et al., “Biochemistry of epidermal stem cells,” Biochim Biophys Acta, vol. 1830, no. 2, pp. 2427–2434, 2013.
[4]  M. Metz-Boutigue, P. Shooshtarizadeh, G. Prevost, Y. Haikel, and J. Chich, “Antimicrobial peptides present in mammalian skin and gut are multifunctional defence molecules,” Current Pharmaceutical Design, vol. 16, no. 9, pp. 1024–1039, 2010.
[5]  D. M. Bautista, M. Pellegrino, and M. Tsunozaki, “TRPA1: a gatekeeper for inflammation,” Annual Review of Physiology, vol. 75, pp. 181–200, 2013.
[6]  M. P. Rodero and K. Khosrotehrani, “Skin wound healing modulation by macrophages,” International Journal of Clinical and Experimental Pathology, vol. 3, no. 7, pp. 643–653, 2010.
[7]  D. L. Woodland and J. E. Kohlmeier, “Migration, maintenance and recall of memory T cells in peripheral tissues,” Nature Reviews Immunology, vol. 9, no. 3, pp. 153–161, 2009.
[8]  D. von Bubnoff, E. Andrès, F. Hentges, T. Bieber, T. Michel, and J. Zimmer, “Natural killer cells in atopic and autoimmune diseases of the skin,” Journal of Allergy and Clinical Immunology, vol. 125, no. 1–3, pp. 60–68, 2010.
[9]  F. R. Rosenberg, S. Sanders, and C. T. Nelson, “Pemphigus. A 20 year review of 107 patients treated with corticosteroids,” Archives of Dermatology, vol. 112, no. 7, pp. 962–970, 1976.
[10]  J. R. Stanley, M. Yaar, P. Hawley-Nelson, and S. I. Katz, “Pemphigus antibodies identify a cell surface glycoprotein synthesized by human and mouse keratinocytes,” Journal of Clinical Investigation, vol. 70, no. 2, pp. 281–288, 1982.
[11]  M. Amagai, V. Klaus-Kovtun, and J. R. Stanley, “Autoantibodies against a novel epithelial cadherin in Pemphigus vulgaris, a disease of cell adhesion,” Cell, vol. 67, no. 5, pp. 869–877, 1991.
[12]  P. Berkowitz, M. Chua, Z. Liu, L. A. Diaz, and D. S. Rubenstein, “Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin,” American Journal of Pathology, vol. 173, no. 6, pp. 1628–1636, 2008.
[13]  H. E. Lee, P. Berkowitz, P. S. Jolly, L. A. Diaz, M. P. Chua, and D. S. Rubenstein, “Biphasic activation of p38MAPK suggests that apoptosis is a downstream event in pemphigus acantholysis,” Journal of Biological Chemistry, vol. 284, no. 18, pp. 12524–12532, 2009.
[14]  S. Getsios, J. Waschke, L. Borradori, M. Hertl, and E. J. Müller, “From cell signaling to novel therapeutic concepts: international pemphigus meeting on advances in pemphigus research and therapy,” Journal of Investigative Dermatology, vol. 130, no. 7, pp. 1764–1768, 2010.
[15]  M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis and therapy of psoriasis,” Nature, vol. 445, no. 7130, pp. 866–873, 2007.
[16]  F. O. Nestle, D. H. Kaplan, and J. Barker, “Mechanisms of disease: psoriasis,” New England Journal of Medicine, vol. 361, no. 5, pp. 444–509, 2009.
[17]  S. Kagami, H. L. Rizzo, J. J. Lee, Y. Koguchi, and A. Blauvelt, “Circulating Th17, Th22, and Th1 cells are increased in psoriasis,” Journal of Investigative Dermatology, vol. 130, no. 5, pp. 1373–1383, 2010.
[18]  C. Mattozzi, A. G. Richetta, C. Cantisani, L. Macaluso, and S. Calvieri, “Psoriasis: new insight about pathogenesis, role of barrier organ integrity, NLR/CATERPILLER family genes and microbial flora,” The Journal of Dermatology, vol. 39, no. 9, pp. 752–760, 2012.
[19]  P. Berkowitz, P. Hu, S. Warren, Z. Liu, L. A. Diaz, and D. S. Rubenstein, “p38MAPK inhibition prevents disease in Pemphigus vulgaris mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 34, pp. 12856–12860, 2006.
[20]  C. Zheng, Z. Lin, Z. J. Zhao, Y. Yang, H. Niu, and X. Shen, “MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27,” Journal of Biological Chemistry, vol. 281, no. 48, pp. 37215–37226, 2006.
[21]  X. Mao, Y. Sano, J. M. Park, and A. S. Payne, “p38 MAPK activation is downstream of the loss of intercellular adhesion in Pemphigus vulgaris,” Journal of Biological Chemistry, vol. 286, no. 2, pp. 1283–1291, 2011.
[22]  J. N. Stern, D. B. Keskin, N. Barteneva, J. Zuniga, E. J. Yunis, and A. R. Ahmed, “Possible role of natural killer cells in Pemphigus vulgaris-preliminary observations,” Clinical and Experimental Immunology, vol. 152, no. 3, pp. 472–481, 2008.
[23]  T. Hashimoto, “Recent advances in the study of the pathophysiology of pemphigus,” Archives of Dermatological Research, vol. 295, supplement 1, pp. S2–S11, 2003.
[24]  S. A. Grando, “Pemphigus autoimmunity: hypotheses and realities,” Autoimmunity, vol. 45, no. 1, pp. 7–35, 2012.
[25]  X. Mao and A. S. Payne, “Seeking approval: present and future therapies for Pemphigus vulgaris,” Current Opinion in Investigational Drugs, vol. 9, no. 5, pp. 497–504, 2008.
[26]  I. Zagorodniuk, S. Weltfriend, L. Shtruminger et al., “A comparison of anti-desmoglein antibodies and indirect immunofluorescence in the serodiagnosis of Pemphigus vulgaris,” International Journal of Dermatology, vol. 44, no. 7, pp. 541–544, 2005.
[27]  M. Alaibac, A. Belloni-Fortina, D. Faggion et al., “Detection of autoantibodies against recombinant desmoglein 1 and 3 molecules in patients with Pemphigus vulgaris: correlation with disease extent at the time of diagnosis and during follow-up,” Clinical and Developmental Immunology, vol. 2009, Article ID 187864, 6 pages, 2009.
[28]  K. Tsunoda, T. Ota, M. Saito et al., “Pathogenic relevance of IgG and IgM antibodies against desmoglein 3 in blister formation in Pemphigus vulgaris,” American Journal of Pathology, vol. 179, no. 2, pp. 795–806, 2011.
[29]  G. F. Diercks, H. H. Pas, and M. F. Jonkman, “The ultrastructure of acantholysis in Pemphigus vulgaris,” British Journal of Dermatology, vol. 160, no. 2, pp. 460–461, 2009.
[30]  A. S. Payne, Y. Hanakawa, M. Amagai, and J. R. Stanley, “Desmosomes and disease: pemphigus and bullous impetigo,” Current Opinion in Cell Biology, vol. 16, no. 5, pp. 536–543, 2004.
[31]  E. Hartlieb, B. Kempf, M. Partilla, B. Vigh, V. Spindler, and J. Waschke, “Desmoglein 2 is less important than desmoglein 3 for keratinocyte cohesion,” PLoS One, vol. 8, no. 1, Article ID e53739, 2013.
[32]  R. W. Eyre and J. R. Stanley, “Human autoantibodies against a desmosomal protein complex with a calcium-sensitive epitope are characteristic of pemphigus foliaceus patients,” Journal of Experimental Medicine, vol. 165, no. 6, pp. 1719–1724, 1987.
[33]  V. T. Nguyen, A. Ndoye, L. D. Shultz, M. R. Pittelkow, and S. A. Grando, “Antibodies against keratinocyte antigens other than desmogleins 1 and 3 can induce Pemphigus vulgaris-like lesions,” Journal of Clinical Investigation, vol. 106, no. 12, pp. 1467–1479, 2000.
[34]  M. Hertl and C. Veldman, “T-cellular autoimmunity against desmogleins in pemphigus, an autoantibody-mediated bullous disorder of the skin,” Autoimmunity Reviews, vol. 2, no. 5, pp. 278–283, 2003.
[35]  M. G. Mahoney, Z. Wang, K. Rothenberger, P. J. Koch, M. Amagai, and J. R. Stanley, “Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris,” Journal of Clinical Investigation, vol. 103, no. 4, pp. 461–468, 1999.
[36]  S. Morioka, G. S. Lazarus, and P. J. Jensen, “Involvement of urokinase-type plasminogen activator in acantholysis induced by pemphigus IgG,” Journal of Investigative Dermatology, vol. 89, no. 5, pp. 474–477, 1987.
[37]  K. H. Singer, K. Hashimoto, P. J. Jensen, S. Morioka, and G. S. Lazarus, “Pathogenesis of autoimmunity in pemphigus,” Annual Review of Immunology, vol. 3, pp. 87–108, 1985.
[38]  M. S. Lin, S. J. Swartz, A. Lopez et al., “Development and characterization of desmoglein-3 specific T cells from patients with Pemphigus vulgaris,” Journal of Clinical Investigation, vol. 99, no. 1, pp. 31–40, 1997.
[39]  Y. Yamamoto, Y. Aoyama, E. Shu, K. Tsunoda, M. Amagai, and Y. Kitajima, “Anti-desmoglein 3 (Dsg3) monoclonal antibodies deplete desmosomes of Dsg3 and differ in their Dsg3-depleting activities related to pathogenicity,” Journal of Biological Chemistry, vol. 282, no. 24, pp. 17866–17876, 2007.
[40]  P. J. Koch, M. G. Mahoney, H. Ishikawa et al., “Targeted disruption of the Pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to Pemphigus vulgaris,” Journal of Cell Biology, vol. 137, no. 5, pp. 1091–1102, 1997.
[41]  M. Amagai, K. Tsunoda, H. Suzuki, K. Nishifuji, S. Koyasu, and T. Nishikawa, “Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus,” Journal of Clinical Investigation, vol. 105, no. 5, pp. 625–631, 2000.
[42]  X. Mao, A. R. Nagler, S. A. Farber et al., “Autoimmunity to desmocollin 3 in Pemphigus vulgaris,” American Journal of Pathology, vol. 177, no. 6, pp. 2724–2730, 2010.
[43]  Y. Kawasaki, Y. Aoyama, K. Tsunoda, M. Amagai, and Y. Kitajima, “Pathogenic monoclonal antibody against desmoglein 3 augments desmoglein 3 and p38 MAPK phosphorylation in human squamous carcinoma cell line,” Autoimmunity, vol. 39, no. 7, pp. 587–590, 2006.
[44]  J. H. Lorch, J. Klessner, J. K. Park et al., “Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells,” Journal of Biological Chemistry, vol. 279, no. 35, pp. 37191–37200, 2004.
[45]  P. Sharma, X. Mao, and A. S. Payne, “Beyond steric hindrance: the role of adhesion signaling pathways in the pathogenesis of pemphigus,” Journal of Dermatological Science, vol. 48, no. 1, pp. 1–14, 2007.
[46]  A. I. Chernyavsky, J. Arredondo, Y. Kitajima, M. Sato-Nagai, and S. A. Grando, “Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of Pemphigus vulgaris antigens,” Journal of Biological Chemistry, vol. 282, no. 18, pp. 13804–13812, 2007.
[47]  S. Marchenko, A. I. Chernyavsky, J. Arredondo, V. Gindi, and S. A. Grando, “Antimitochondrial autoantibodies in Pemphigus vulgaris: a missing link in disease pathophysiology,” Journal of Biological Chemistry, vol. 285, no. 6, pp. 3695–3704, 2010.
[48]  V. Spindler, V. Rotzer, C. Dehner et al., “Peptide-mediated desmoglein 3 crosslinking prevents Pemphigus vulgaris autoantibody-induced skin blistering,” Journal of Clinical Investigation, vol. 123, no. 2, pp. 800–811, 2013.
[49]  M. Saito, S. N. Stahley, C. Y. Caughman et al., “Signaling dependent and independent mechanisms in Pemphigus vulgaris blister formation,” PLoS One, vol. 7, no. 12, Article ID e50696, 2012.
[50]  J. Saklatvala, “The p38 MAP kinase pathway as a therapeutic target in inflammatory disease,” Current Opinion in Pharmacology, vol. 4, no. 4, pp. 372–377, 2004.
[51]  Y. Seko, S. Cole, W. Kasprzak, B. A. Shapiro, and J. A. Ragheb, “The role of cytokine mRNA stability in the pathogenesis of autoimmune disease,” Autoimmunity Reviews, vol. 5, no. 5, pp. 299–305, 2006.
[52]  M. Brook, G. Sully, A. R. Clark, and J. Saklatvala, “Regulation of tumour necrosis factor α mRNA stability by the mitogen-activated protein kinase p38 signalling cascade,” FEBS Letters, vol. 483, no. 1, pp. 57–61, 2000.
[53]  A. Mavropoulos, G. Sully, A. P. Cope, and A. R. Clark, “Stabilization of IFN-γ mRNA by MAPK p38 in IL-12- and IL-18-stimulated human NK cells,” Blood, vol. 105, no. 1, pp. 282–288, 2005.
[54]  A. Clark, J. Dean, C. Tudor, and J. Saklatvala, “Post-transcriptional gene regulation by MAP kinases via AU-rich elements,” Frontiers in Bioscience, vol. 14, no. 3, pp. 847–871, 2009.
[55]  K. Otkjaer, H. Holtmann, T. W. Kragstrup et al., “The p38 MAPK regulates IL-24 expression by stabilization of the 3′ UTR of IL-24 mRNA,” PLoS ONE, vol. 5, no. 1, Article ID e8671, 2010.
[56]  N. Dauletbaev, D. Eklove, N. Mawji et al., “Down-regulation of cytokine-induced interleukin-8 requires inhibition of p38 Mitogen-activated Protein Kinase (MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms,” Journal of Biological Chemistry, vol. 286, no. 18, pp. 15998–16007, 2011.
[57]  L. R. Coulthard, D. E. White, D. L. Jones, M. F. McDermott, and S. A. Burchill, “p38MAPK: stress responses from molecular mechanisms to therapeutics,” Trends in Molecular Medicine, vol. 15, no. 8, pp. 369–379, 2009.
[58]  A. Mavropoulos, T. Orfanidou, C. Liaskos et al., “p38 mitogen-activated protein kinase (p38 MAPK)-mediated autoimmunity: lessons to learn from ANCA vasculitis and Pemphigus vulgaris,” Autoimmunity Reviews, vol. 12, no. 5, pp. 580–590, 2013.
[59]  J. S. Arthur and J. Darragh, “Signaling downstream of p38 in psoriasis,” Journal of Investigative Dermatology, vol. 126, no. 8, pp. 1689–1691, 2006.
[60]  C. Johansen, A. T. Funding, K. Otkjaer et al., “Protein expression of TNF-α in psoriatic skin is regulated at a posttranscriptional level by MAPK-activated protein kinase 2,” Journal of Immunology, vol. 176, no. 3, pp. 1431–1438, 2006.
[61]  B. B. Aggarwal, S. Shishodia, Y. Takada et al., “TNF blockade: an inflammatory issue,” Ernst Schering Research Foundation Workshop, no. 56, pp. 161–186, 2006.
[62]  L. Soegaard-Madsen, C. Johansen, L. Iversen, and K. Kragballe, “Adalimumab therapy rapidly inhibits p38 mitogen-activated protein kinase activity in lesional psoriatic skin preceding clinical improvement,” British Journal of Dermatology, vol. 162, no. 6, pp. 1216–1223, 2010.
[63]  A. Mavropoulos, D. Smyk, E. I. Rigopoulou, and D. P. Bogdanos, “Human peripheral blood mononuclear cell culture for flow cytometric analysis of phosphorylated mitogen-activated protein kinases,” Methods in Molecular Biology, vol. 806, pp. 275–285, 2012.
[64]  O. D. Perez, P. O. Krutzik, and G. P. Nolan, “Flow cytometric analysis of kinase signaling cascades,” Methods in Molecular Biology, vol. 263, pp. 67–94, 2004.
[65]  P. O. Krutzik, J. M. Irish, G. P. Nolan, and O. D. Perez, “Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications,” Clinical Immunology, vol. 110, no. 3, pp. 206–221, 2004.
[66]  D. T. Montag and M. T. Lotze, “Rapid flow cytometric measurement of cytokine-induced phosphorylation pathways [CIPP] in human peripheral blood leukocytes,” Clinical Immunology, vol. 121, no. 2, pp. 215–226, 2006.
[67]  A. Mavropoulos, E. Spyrou, E. I. Rigopoulou, D. Vergani, G. N. Dalekos, and D. P. Bogdanos, “1107 Phosphorylation of P38 MAPK is detectable in NKT cells of patients with autoimmune hepatitis in whom it mirrors disease activity,” Journal of Hepatology, vol. 52, p. S428, 2010.
[68]  G. Schett, J. Zwerina, and G. Firestein, “The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 7, pp. 909–916, 2008.
[69]  L. H. Pettus and R. P. Wurz, “Small molecule p38 MAP kinase inhibitors for the treatment of inflammatory diseases: novel structures and developments during 2006–2008,” Current Topics in Medicinal Chemistry, vol. 8, no. 16, pp. 1452–1467, 2008.
[70]  S. E. Sweeney, “The as-yet unfulfilled promise of p38 MAPK inhibitors,” Nature Reviews, vol. 5, no. 9, pp. 475–477, 2009.
[71]  M. Terajima, T. Inoue, K. Magari, H. Yamazaki, Y. Higashi, and H. Mizuhara, “Anti-inflammatory effect and selectivity profile of AS1940477, a novel and potent p38 mitogen-activated protein kinase inhibitor,” European Journal of Pharmacology, vol. 698, no. 1–3, pp. 455–462, 2013.
[72]  S. Medicherla, J. Y. Ma, M. Reddy et al., “Topical alpha-selective p38 MAP kinase inhibition reduces acute skin inflammation in guinea pig,” Journal of Inflammation Research, vol. 3, no. 1, pp. 9–16, 2010.
[73]  S. Wang, H. Uchi, S. Hayashida, K. Urabe, Y. Moroi, and M. Furue, “Differential expression of phosphorylated extracellular signal-regulated kinase 1/2, phosphorylated p38 mitogen-activated protein kinase and nuclear factor-κB p105/p50 in chronic inflammatory skin diseases,” Journal of Dermatology, vol. 36, no. 10, pp. 534–540, 2009.
[74]  L. Jinlian, Z. Yingbin, and W. Chunbo, “p38 MAPK in regulating cellular responses to ultraviolet radiation,” Journal of Biomedical Science, vol. 14, no. 3, pp. 303–312, 2007.
[75]  J. Hildesheim, R. T. Awwad, and A. J. Fornace Jr., “p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses,” Journal of Investigative Dermatology, vol. 122, no. 2, pp. 497–502, 2004.
[76]  K. Ipaktchi, A. Mattar, A. D. Niederbichler et al., “Topical p38MAPK inhibition reduces dermal inflammation and epithelial apoptosis in burn wounds,” Shock, vol. 26, no. 2, pp. 201–209, 2006.
[77]  C. Jonak, M. Mildner, G. Klosner et al., “The hsp27kD heat shock protein and p38-MAPK signaling are required for regular epidermal differentiation,” Journal of Dermatological Science, vol. 61, no. 1, pp. 32–37, 2011.
[78]  J. H. Choi, D. K. Choi, K. C. Sohn et al., “Absence of a human DnaJ protein hTid-1S correlates with aberrant actin cytoskeleton organization in lesional psoriatic skin,” Journal of Biological Chemistry, vol. 287, no. 31, pp. 25954–25963, 2012.
[79]  B. Rock, R. S. Labib, and L. A. Diaz, “Monovalent Fab' immunoglobulin fragments from endemic pemphigus foliaceus autoantibodies reproduce the human disease in neonatal Balb/c mice,” Journal of Clinical Investigation, vol. 85, no. 1, pp. 296–299, 1990.
[80]  M. Kalantari-Dehaghi, G. J. Anhalt, M. J. Camilleri et al., “Pemphigus vulgaris autoantibody profiling by proteomic technique,” PLoS One, vol. 8, no. 3, Article ID e57587, 2013.
[81]  M. Papamichail, S. A. Perez, A. D. Gritzapis, and C. N. Baxevanis, “Natural killer lymphocytes: biology, development, and function,” Cancer Immunology, Immunotherapy, vol. 53, no. 3, pp. 176–186, 2004.
[82]  S. Johansson, H. Hall, L. Berg, and P. Hoglund, “NK cells in autoimmune disease,” Current Topics in Microbiology and Immunology, vol. 298, pp. 259–277, 2006.
[83]  A. Cameron, B. Kirby, W. Fei, and C. Griffiths, “Natural killer and natural killer-T cells in psoriasis,” Archives of Dermatological Research, vol. 294, no. 8, pp. 363–369, 2002.
[84]  H. Takahashi, M. Amagai, A. Tanikawa et al., “T helper type 2-biased natural killer cell phenotype in patients with Pemphigus vulgaris,” Journal of Investigative Dermatology, vol. 127, no. 2, pp. 324–330, 2007.
[85]  B. Hervier, V. Beziat, J. Haroche et al., “Phenotype and function of natural killer cells in systemic lupus erythematosus: excess interferon-γ production in patients with active disease,” Arthritis and Rheumatism, vol. 63, no. 6, pp. 1698–1706, 2011.
[86]  L. R. Zakka, E. Fradkov, D. B. Keskin, I. Tabansky, J. N. H. Stern, and A. R. Ahmed, “The role of natural killer cells in autoimmune blistering diseases,” Autoimmunity, vol. 45, no. 1, pp. 44–54, 2012.
[87]  V. de Re, L. Caggiari, M. de Zorzi, and G. Toffoli, “KIR molecules: recent patents of interest for the diagnosis and treatment of several autoimmune diseases, chronic inflammation, and B-cell malignancies,” Recent Patents on DNA and Gene Sequences, vol. 5, no. 3, pp. 169–174, 2011.
[88]  D. G. Augusto, S. C. Lobo-Alves, M. F. Melo, N. F. Pereira, and M. L. Petzl-Erler, “Activating KIR and HLA Bw4 ligands are associated to decreased susceptibility to pemphigus foliaceus, an autoimmune blistering skin disease,” PLoS One, vol. 7, no. 7, Article ID e39991, 2012.
[89]  S. E. Dick and V. P. Werth, “Pemphigus: a treatment update,” Autoimmunity, vol. 39, no. 7, pp. 591–599, 2006.
[90]  D. Tsuruta, N. Ishii, and T. Hashimoto, “Diagnosis and treatment of pemphigus,” Immunotherapy, vol. 4, no. 7, pp. 735–745, 2012.
[91]  S. Baum, S. Greenberger, L. Samuelov et al., “Methotrexate is an effective and safe adjuvant therapy for Pemphigus vulgaris,” European Journal of Dermatology, vol. 22, no. 1, pp. 83–87, 2012.
[92]  N. Vyas, N. S. Patel, and G. F. Cohen, “Mycophenolate mofetil as a first-line steroid-sparing agent in the treatment of Pemphigus vulgaris,” Journal of Drugs in Dermatology, vol. 12, no. 2, pp. 210–216, 2013.
[93]  R. J. Feldman and A. R. Ahmed, “Relevance of rituximab therapy in Pemphigus vulgaris: analysis of current data and the immunologic basis for its observed responses,” Expert Review of Clinical Immunology, vol. 7, no. 4, pp. 529–541, 2011.
[94]  L. R. Zakka, S. S. Shetty, and A. R. Ahmed, “Rituximab in the treatment of Pemphigus vulgaris,” Dermatology and Therapy, vol. 2, no. 1, pp. 2–17, 2012.
[95]  A. R. Clark, “MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids?” Journal of Endocrinology, vol. 178, no. 1, pp. 5–12, 2003.
[96]  R. Lang, M. Hammer, and J. Mages, “DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response,” Journal of Immunology, vol. 177, no. 11, pp. 7497–7504, 2006.
[97]  M. Lasa, S. M. Abraham, C. Boucheron, J. Saklatvala, and A. R. Clark, “Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38,” Molecular and Cellular Biology, vol. 22, no. 22, pp. 7802–7811, 2002.
[98]  E. M. King, N. S. Holden, W. Gong, C. F. Rider, and R. Newton, “Inhibition of NF-κ-dependent transcription by MKP-1. Transcriptional repression by glucocorticoids occuring via p38 MAPK,” Journal of Biological Chemistry, vol. 284, no. 39, pp. 26803–26815, 2009.
[99]  A. Lawan, E. Torrance, S. Al-Harthi et al., “MKP-2: out of the DUSP-bin and back into the limelight,” Biochemical Society Transactions, vol. 40, no. 1, pp. 235–239, 2012.
[100]  J. H. Hu, T. Chen, Z. H. Zhuang et al., “Feedback control of MKP-1 expression by p38,” Cellular Signalling, vol. 19, no. 2, pp. 393–400, 2007.
[101]  R. B. Kjellerup, C. Johansen, K. Kragballe, and L. Iversen, “The expression of dual specificity phosphatase 1 mRNA is downregulated in lesional psoriatic skin,” British Journal of Dermatology, vol. 168, no. 2, pp. 339–345, 2013.
[102]  H. Y. Schultz, L. A. Diaz, D. A. Sirois, V. P. Werth, and S. A. Grando, “Generating consensus research goals and treatment strategies for pemphigus and pemphigoid: the 2010 JC Bystryn pemphigus and pemphigoid meeting,” Journal of Investigative Dermatology, vol. 131, no. 7, pp. 1395–1399, 2011.
[103]  P. Cohen, “Targeting protein kinases for the development of anti-inflammatory drugs,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 317–324, 2009.
[104]  I. M. Pedersen, A. M. Buhl, P. Klausen, C. H. Geisler, and J. Jurlander, “The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism,” Blood, vol. 99, no. 4, pp. 1314–1319, 2002.
[105]  M. Stewart, V. Malkovska, J. Krishnan, L. Lessin, and W. Barth, “Lymphoma in a patient with rheumatoid arthritis receiving methotrexate treatment: successful treatment with rituximab,” Annals of the Rheumatic Diseases, vol. 60, no. 9, pp. 892–893, 2001.
[106]  E. Kimby, “Tolerability and safety of rituximab (MabThera),” Cancer Treatment Reviews, vol. 31, no. 6, pp. 456–473, 2005.
[107]  T. G. Salopek, S. Logsetty, and E. E. Tredget, “Anti-CD20 chimeric monoclonal antibody (rituximab) for the treatment of recalcitrant, life-threatening Pemphigus vulgaris with implications in the pathogenesis of the disorder,” Journal of the American Academy of Dermatology, vol. 47, no. 5, pp. 785–788, 2002.
[108]  M. J. Arin, A. Engert, T. Krieg, and N. Hunzelmann, “Anti-CD20 monoclonal antibody (rituximab) in the treatment of pemphigus,” British Journal of Dermatology, vol. 153, no. 3, pp. 620–625, 2005.
[109]  H. H. Cho, S. P. Jin, and J. H. Chung, “Clinical experiences of different dosing schedules of rituximab in pemphigus with various disease severities,” Journal of the European Academy of Dermatology and Venereology, 2013.
[110]  M. I. Vega, S. Huerta-Yepaz, H. Garban, A. Jazirehi, C. Emmanouilides, and B. Bonavida, “Rituximab inhibits p38 MAPK activity in 2F7 B NHL and decreases IL-10 transcription: pivotal role of p38 MAPK in drug resistance,” Oncogene, vol. 23, no. 20, pp. 3530–3540, 2004.
[111]  A. Jacobi, G. Schuler, and M. Hertl, “Rapid control of therapy-refractory Pemphigus vulgaris by treatment with the tumour necrosis factor-α inhibitor infliximab [6],” British Journal of Dermatology, vol. 153, no. 2, pp. 448–449, 2005.
[112]  A. Shetty, C. B. Marcum, L. F. Glass, and J. D. Carter, “Successful treatment of Pemphigus vulgaris with etanercept in four patients,” Journal of Drugs in Dermatology, vol. 8, no. 10, pp. 940–943, 2009.
[113]  N. Cirillo, E. Cozzani, M. Carrozzo, and S. A. Grando, “Urban legends: Pemphigus vulgaris,” Oral Diseases, vol. 18, no. 5, pp. 442–458, 2012.
[114]  S. A. Grando, J. Bystryn, A. I. Chernyavsky et al., “Apoptolysis: a novel mechanism of skin blistering in Pemphigus vulgaris linking the apoptotic pathways to basal cell shrinkage and suprabasal acantholysis,” Experimental Dermatology, vol. 18, no. 9, pp. 764–770, 2009.
[115]  D. P. Bogdanos, H. Baum, M. Okamoto et al., “Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its lactobacillus mimic,” Hepatology, vol. 42, no. 2, pp. 458–465, 2005.
[116]  D. P. Bogdanos, G. Mieli-Vergani, and D. Vergani, “Autoantibodies and their antigens in autoimmune hepatitis,” Seminars in Liver Disease, vol. 29, no. 3, pp. 241–253, 2009.
[117]  E. I. Rigopoulou, E. T. Davies, D. Bogdanos et al., “Antimitochondrial antibodies of immunoglobulin G3 subclass are associated with a more severe disease course in primary biliary cirrhosis,” Liver International, vol. 27, no. 9, pp. 1226–1231, 2007.
[118]  D. S. Smyk, E. I. Rigopoulou, A. Lleo et al., “Immunopathogenesis of primary biliary cirrhosis: an old wives' tale,” Immunity and Ageing, vol. 8, no. 1, p. 12, 2011.
[119]  G. Mieli-Vergani and D. Vergani, “Autoimmune hepatitis,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 6, pp. 320–329, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133