全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NETosis

DOI: 10.1155/2013/651497

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neutrophils are the first line of defense of the immune system against infection. Among their weaponry, they have the ability to mix and extrude their DNA and bactericidal molecules creating NET-like structures in a unique type of cell death called NETosis. This process is important in order to control extracellular infections limiting collateral damage. Its aberrant function has been implicated in several human diseases including sepsis and autoimmune disease. The purpose of the present paper is to give a general introduction to this concept. 1. (N)ETosis Polisegmented granular cells are the immune system’s first line of defense against infections. They have been considered short-lived cells with unspecific functions of phagocytosis, granular secretion, and the production of reactive oxygen species (ROS) [1]. This knowledge has been challenged by several lines of evidence, including the formation of extracellular traps (ET), a defense mechanism consisting of the extrusion of intracellular material in the form of neutrophils extracellular traps (NETs) to the surrounding extracellular medium in order to concentrate antibacterial substances and snare invading microorganisms; such a process is often accompanied by cell death. The purpose of the present paper is to give a general introduction to this concept. 2. The Neutrophil Human neutrophils constitute the first line of defense of innate cellular immunity. As the most abundant subtype of leucocytes in peripheral blood, they constitute approximately 70% of these cells [2, 3]. They are terminally differentiated cells with a life span of 12 to 15 hours [4], whom after this time period undergo apoptosis: this life span can be extended after exposition to several substances like cytokines [5]. Under light microscopy, these cells have an approximate diameter of 12 to 15?μm and a nucleus with several lobules [2]. They also have a cytoplasm rich in different granules plenty of antimicrobial peptides [3] and enzymes necessary to synthesize several substances, including arachidonic acid derivates with either inflammatory properties like tromboxans and leucotriens [6], or negative regulators of inflammation such as prostaglandins, lipoxins, protectins, and so forth. These substances can be produced entirely within the neutrophils [6] or in conjunction with other cells using transcellular pathways to produce lipoxins [7]. Neutrophils can produce chemokines, cytokines from the tumor necrosis factor (TNF) superfamily, angiogenic and fibrogenic factors, and pattern recognition molecules such as pentraxins, collectins,

References

[1]  A. Mantovani, M. A. Cassatella, C. Costantini, and S. Jaillon, “Neutrophils in the activation and regulation of innate and adaptive immunity,” Nature Reviews Immunology, vol. 11, no. 8, pp. 519–531, 2011.
[2]  A. Abul, et al., “Inmunidad innata,” in Inmunologia Celular Y Molecular, A. Abul, Ed., p. 566, Elsevier, 6th edition, 2008.
[3]  V. Kumar and A. Sharma, “Neutrophils: cinderella of innate immune system,” International Immunopharmacology, vol. 10, no. 11, pp. 1325–1334, 2010.
[4]  M. Cabrini, K. Nahmod, and J. Geffner, “New insights into the mechanisms controlling neutrophil survival,” Current Opinion in Hematology, vol. 17, no. 1, pp. 31–35, 2010.
[5]  F. Colotta, F. Re, N. Polentarutti, S. Sozzani, and A. Mantovani, “Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products,” Blood, vol. 80, no. 8, pp. 2012–2020, 1992.
[6]  C. N. Serhan, N. Chiang, and T. E. Van Dyke, “Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators,” Nature Reviews Immunology, vol. 8, no. 5, pp. 349–361, 2008.
[7]  M. Romano and C. N. Serhan, “Lipoxin generation by permeabilized human platelets,” Biochemistry, vol. 31, no. 35, pp. 8269–8277, 1992.
[8]  C. Nathan, “Neutrophils and immunity: challenges and opportunities,” Nature Reviews Immunology, vol. 6, no. 3, pp. 173–182, 2006.
[9]  V. Brinkmann, U. Reichard, C. Goosmann et al., “Neutrophil extracellular traps kill bacteria,” Science, vol. 303, no. 5663, pp. 1532–1535, 2004.
[10]  F. Wartha, K. Beiter, S. Normark, and B. Henriques-Normark, “Neutrophil extracellular traps: casting the NET over pathogenesis,” Current Opinion in Microbiology, vol. 10, no. 1, pp. 52–56, 2007.
[11]  S. Jaillon, G. Peri, Y. Delneste et al., “The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 793–804, 2007.
[12]  J. H. Cho, I. P. Fraser, K. Fukase et al., “Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity,” Blood, vol. 106, no. 7, pp. 2551–2558, 2005.
[13]  M. Bianchi, M. J. Niemiec, U. Siler, C. F. Urban, and J. Reichenbach, “Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent,” Journal of Allergy and Clinical Immunology, vol. 127, no. 5, pp. 1243–1252, 2011.
[14]  J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972.
[15]  G. Kroemer, W. S. El-Deiry, P. Golstein et al., “Classification of cell death: recommendations of the Nomenclature Committee on Cell Death,” Cell Death and Differentiation, vol. 12, no. 2, pp. 1463–1467, 2005.
[16]  G. Kroemer, L. Galluzzi, P. Vandenabeele et al., “Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009,” Cell Death and Differentiation, vol. 16, no. 1, pp. 3–11, 2009.
[17]  L. Galluzzi, I. Vitale, J. M. Abrams et al., “Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012,” Cell Death and Differentiation, vol. 19, no. 1, pp. 107–120, 2012.
[18]  D. C. Rubinsztein, G. Mari?o, and G. Kroemer, “Autophagy and aging,” Cell, vol. 146, no. 5, pp. 682–695, 2011.
[19]  A. Eisenberg-Lerner, S. Bialik, H. U. Simon, and A. Kimchi, “Life and death partners: apoptosis, autophagy and the cross-talk between them,” Cell Death and Differentiation, vol. 16, no. 7, pp. 966–975, 2009.
[20]  A. B. Wardini, A. B. Guimar?es-Costa, M. T. C. Nascimento et al., “Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus,” Journal of General Virology, vol. 91, no. 1, pp. 259–264, 2010.
[21]  D. Ermert, C. F. Urban, B. Laube, C. Goosmann, A. Zychlinsky, and V. Brinkmann, “Mouse neutrophil extracellular traps in microbial infections,” Journal of Innate Immunity, vol. 1, no. 3, pp. 181–193, 2009.
[22]  S. R. Clark, A. C. Ma, S. A. Tavener et al., “Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood,” Nature Medicine, vol. 13, no. 4, pp. 463–469, 2007.
[23]  J. D. Lippolis, T. A. Reinhardt, J. P. Goff, and R. L. Horst, “Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk,” Veterinary Immunology and Immunopathology, vol. 113, no. 1-2, pp. 248–255, 2006.
[24]  C. F. Urban, D. Ermert, M. Schmid et al., “Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans,” PLoS Pathogens, vol. 5, no. 10, article e1000639, 2009.
[25]  M. Bianchi, A. Hakkim, V. Brinkmann et al., “Restoration of NET formation by gene therapy in CGD controls aspergillosis,” Blood, vol. 114, no. 13, pp. 2619–2622, 2009.
[26]  S. Bruns, O. Kniemeyer, M. Hasenberg et al., “Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA,” PLoS Pathogens, vol. 6, no. 4, article e1000873, 2010.
[27]  A. B. Guimar?es-Costa, M. T. C. Nascimento, G. S. Froment et al., “Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6748–6753, 2009.
[28]  E. Medina, “Neutrophil extracellular traps: a strategic tactic to defeat pathogens with potential consequences for the host,” Journal of Innate Immunity, vol. 1, no. 3, pp. 176–180, 2009.
[29]  Q. Remijsen, T. W. Kuijpers, E. Wirawan, S. Lippens, P. Vandenabeele, and T. Vanden Berghe, “Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality,” Cell Death and Differentiation, vol. 18, no. 4, pp. 581–588, 2011.
[30]  W. D. Krautgartner, M. Klappacher, M. Hannig et al., “Fibrin mimics neutrophil extracellular traps in SEM,” Ultrastructural Pathology, vol. 34, no. 4, pp. 226–231, 2010.
[31]  L. Vitkov, M. Klappacher, M. Hannig, and W. D. Krautgartner, “Neutrophil fate in gingival crevicular fluid,” Ultrastructural Pathology, vol. 34, no. 1, pp. 25–30, 2010.
[32]  A. K. Gupta, P. Hasler, W. Holzgreve, and S. Hahn, “Neutrophil NETs: a novel contributor to preeclampsia-associated placental hypoxia?” Seminars in Immunopathology, vol. 29, no. 2, pp. 163–167, 2007.
[33]  S. Yousefi, J. A. Gold, N. Andina et al., “Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense,” Nature Medicine, vol. 14, no. 9, pp. 949–953, 2008.
[34]  V. Marcos, Z. Zhou, A. O. Yildirim, et al., “CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation,” Nature Medicine, vol. 16, no. 9, pp. 1018–1023, 2010.
[35]  V. Ramos-Kichik, R. Mondragón-Flores, M. Mondragón-Castelán et al., “Neutrophil extracellular traps are induced by Mycobacterium tuberculosis,” Tuberculosis, vol. 89, no. 1, pp. 29–37, 2009.
[36]  V. S. Baker, G. E. Imade, N. B. Molta et al., “Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age,” Malaria Journal, vol. 7, article 41, 2008.
[37]  T. Saitoh, J. Komano, Y. Saitoh, et al., “Neutrophil extracellular traps mediate a host defense response to human,” Cell Host & Microbe, vol. 12, no. 1, pp. 109–116, 2012.
[38]  M. F. Denny, S. Yalavarthi, W. Zhao, et al., “A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs,” Journal of Immunology, vol. 184, no. 6, pp. 3284–3297, 2010.
[39]  A. Hakkim, B. G. Fürnrohr, K. Amann et al., “Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9813–9818, 2010.
[40]  G. Obermoser and V. Pascual, “The interferon-α signature of systemic lupus erythematosus,” Lupus, vol. 19, no. 9, pp. 1012–1019, 2010.
[41]  E. Villanueva, S. Yalavarthi, C. C. Berthier et al., “Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus,” Journal of Immunology, vol. 187, no. 1, pp. 538–552, 2011.
[42]  K. Kessenbrock, M. Krumbholz, U. Sch?nermarck et al., “Netting neutrophils in autoimmune small-vessel vasculitis,” Nature Medicine, vol. 15, no. 6, pp. 623–625, 2009.
[43]  C. Schorn, C. Janko, M. Latzko, R. Chaurio, G. Schett, and M. Herrmann, “Monosodium urate crystals induce extracellular DNA traps in neutrophils,” Frontiers in Immunology, vol. 3, article 277, 2012.
[44]  H. U. Simon, “Neutrophil apoptosis pathways and their modifications in inflammation,” Immunological Reviews, vol. 193, pp. 101–110, 2003.
[45]  C. C. Mihalache, S. Yousefi, S. Conus, P. M. Villiger, E. M. Schneider, and H. U. Simon, “Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events,” Journal of Immunology, vol. 186, no. 11, pp. 6532–6542, 2011.
[46]  V. Brinkmann, B. Laube, U. Abu Abed, C. Goosmann, and A. Zychlinsky, “Neutrophil extracellular traps: how to generate and visualize them,” Journal of Visualized Experiments, no. 36, article 1724, 2010.
[47]  W. L. Lee and S. Grinstein, “Immunology. The tangled webs that neutrophils weave,” Science, vol. 303, no. 5663, pp. 1477–1478, 2004.
[48]  V. Brinkmann and A. Zychlinsky, “Beneficial suicide: why neutrophils die to make NETs,” Nature Reviews Microbiology, vol. 5, no. 8, pp. 577–582, 2007.
[49]  T. A. Fuchs, U. Abed, C. Goosmann et al., “Novel cell death program leads to neutrophil extracellular traps,” Journal of Cell Biology, vol. 176, no. 2, pp. 231–241, 2007.
[50]  M. von K?ckritz-Blickwede, O. Goldmann, P. Thulin et al., “Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation,” Blood, vol. 111, no. 6, pp. 3070–3080, 2008.
[51]  F. Wartha and B. Henriques-Normark, “ETosis: a novel cell death pathway,” Science Signaling, vol. 1, no. 21, article pe25, 2008.
[52]  B. E. Steinberg and S. Grinstein, “Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death,” Science's STKE, vol. 2007, no. 379, article pe11, 2007.
[53]  B. Amulic and G. Hayes, “Neutrophil extracellular traps,” Current Biology, vol. 21, no. 9, pp. R297–R298, 2011.
[54]  N. K. Tonks, “Redox redux: revisiting PTPs and the control of cell signaling,” Cell, vol. 121, no. 5, pp. 667–670, 2005.
[55]  B. Fadeel, A. ?hlin, J. I. Henter, S. Orrenius, and M. B. Hampton, “Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species,” Blood, vol. 92, no. 12, pp. 4808–4818, 1998.
[56]  B. M. Babior, “NADPH oxidase,” Current Opinion in Immunology, vol. 16, no. 1, pp. 42–47, 2004.
[57]  V. Marcos, Z. Zhou, A. O. Yildirim, et al., “CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation,” Nature Medicine, vol. 17, no. 7, pp. 899–899, 2011.
[58]  V. Papayannopoulos, K. D. Metzler, A. Hakkim, and A. Zychlinsky, “Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps,” Journal of Cell Biology, vol. 191, no. 3, pp. 677–691, 2010.
[59]  K. D. Metzler, T. A. Fuchs, W. M. Nauseef et al., “Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity,” Blood, vol. 117, no. 3, pp. 953–959, 2011.
[60]  Y. Wang, M. Li, S. Stadler et al., “Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation,” Journal of Cell Biology, vol. 184, no. 2, pp. 205–213, 2009.
[61]  F. G. Mastronardi, D. D. Wood, J. Mei et al., “Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation,” Journal of Neuroscience, vol. 26, no. 44, pp. 11387–11396, 2006.
[62]  P. Li, M. Li, M. R. Lindberg, M. J. Kennett, N. Xiong, and Y. Wang, “PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps,” Journal of Experimental Medicine, vol. 207, no. 9, pp. 1853–1862, 2010.
[63]  J. G. Hirsch, “Bactericidal action of histone,” The Journal of Experimental Medicine, vol. 108, no. 6, pp. 925–944, 1958.
[64]  K. Beiter, F. Wartha, B. Albiger, S. Normark, A. Zychlinsky, and B. Henriques-Normark, “An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps,” Current Biology, vol. 16, no. 4, pp. 401–407, 2006.
[65]  J. T. Buchanan, A. J. Simpson, R. K. Aziz et al., “DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps,” Current Biology, vol. 16, no. 4, pp. 396–400, 2006.
[66]  F. Wartha, K. Beiter, B. Albiger et al., “Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps,” Cellular Microbiology, vol. 9, no. 5, pp. 1162–1171, 2007.
[67]  A. C. Ma and P. Kubes, “Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis,” Journal of Thrombosis and Haemostasis, vol. 6, no. 3, pp. 415–420, 2008.
[68]  C. T. Ammollo, F. Semeraro, J. Xu, N. L. Esmon, and C. T. Esmon, “Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation,” Journal of Thrombosis and Haemostasis, vol. 9, no. 9, pp. 1795–1803, 2011.
[69]  J. Xu, X. Zhang, R. Pelayo et al., “Extracellular histones are major mediators of death in sepsis,” Nature Medicine, vol. 15, no. 11, pp. 1318–1321, 2009.
[70]  C. Chaput and A. Zychlinsky, “Sepsis: the dark side of histones,” Nature Medicine, vol. 15, no. 11, pp. 1245–1246, 2009.
[71]  V. Papayannopoulos and A. Zychlinsky, “NETs: a new strategy for using old weapons,” Trends in Immunology, vol. 30, no. 11, pp. 513–521, 2009.
[72]  A. S. Alghamdi and D. N. Foster, “Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps,” Biology of Reproduction, vol. 73, no. 6, pp. 1174–1181, 2005.
[73]  A. K. Gupta, P. Hasler, W. Holzgreve, S. Gebhardt, and S. Hahn, “Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia,” Human Immunology, vol. 66, no. 11, pp. 1146–1154, 2005.
[74]  X. Bosch, “Systemic lupus erythematosus and the neutrophil,” The New England Journal of Medicine, vol. 365, pp. 758–760, 2011.
[75]  T. L?gters, S. Margraf, J. Altrichter et al., “The clinical value of neutrophil extracellular traps,” Medical Microbiology and Immunology, vol. 198, pp. 211–219, 2009.
[76]  G. Melino, “The Sirens' song,” Nature, vol. 412, no. 6842, p. 23, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133