全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

rTMS in the Treatment of Drug Addiction: An Update about Human Studies

DOI: 10.1155/2014/815215

Full-Text   Cite this paper   Add to My Lib

Abstract:

Drug addiction can be a devastating and chronic relapsing disorder with social, psychological, and physical consequences, and more effective treatment options are needed. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that has been assessed in a growing number of studies for its therapeutic potential in treating addiction. This review paper offers an overview on the current state of clinical research in treating drug addiction with rTMS. Because of the limited research in this area, all studies (including case reports) that evaluated the therapeutic use of rTMS in nicotine, alcohol, or illicit drug addiction were included in this review. Papers published prior to December 2012 were found through an NCBI PubMed search. A total of eleven studies were identified that met review criteria. There is nascent evidence that rTMS could be effective in reducing cocaine craving and nicotine and alcohol craving and consumption and might represent a potential therapeutic tool for treating addiction. Further studies are needed to identify the optimal parameters of stimulation for the most effective treatment of drug addiction, to improve our comprehension of the treatment neurophysiological effects, and to conduct rigorous, controlled efficacy studies with adequate power. 1. Introduction Psychoactive drugs act on the central nervous system and recurring drug intoxication can result in addiction, a complex disease process of the brain which can be treated [1]. Addiction can be described as a persistent state in which there is reduced capacity to control compulsive drug-seeking, regardless of whether it involves risk of negative consequences [2, 3]. It is often a devastating and chronically relapsing disorder with social, psychological, and physical consequences. Drug addiction incurs enormous medical, economic, and social costs. The currently available treatment options for addiction remain somewhat limited and long-term success rates are modest [4]. Brain stimulation allows modulation of activity in specific brain regions. Recently, nonsurgical brain stimulation techniques have been utilized in examining the effects of drug administration on cortical activity in order to further explore the effects of repeated drug use on cortical excitability. Furthermore, several novel studies have begun to assess brain stimulation as a potential treatment for reducing addictive behaviours [5]. This review paper offers an overview on the current state of research in treating addiction in humans with transcranial magnetic stimulation

References

[1]  R. Z. Goldstein and N. D. Volkow, “Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex,” The American Journal of Psychiatry, vol. 159, no. 10, pp. 1642–1652, 2002.
[2]  American Psychiatric Association (APA), Diagnostic and Statistical Manual of Mental Disorders, Text Revision (DSM-IV-TR), American Psychiatric Association, Washington, DC, USA, 4th edition, 2000.
[3]  S. E. Hyman and R. C. Malenka, “Addiction and the brain: the neurobiology of compulsion and its persistence,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 695–703, 2001.
[4]  C. P. O’Brien, “Evidence-based treatments of addiction,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1507, pp. 3277–3286, 2008.
[5]  J. Feil and A. Zangen, “Brain stimulation in the study and treatment of addiction,” Neuroscience and Biobehavioral Reviews, vol. 34, no. 4, pp. 559–574, 2010.
[6]  M. Brainin, M. Barnes, J.-C. Baron et al., “Guidance for the preparation of neurological management guidelines by EFNS scientific task forces—revised recommendations 2004,” European Journal of Neurology, vol. 11, no. 9, pp. 577–581, 2004.
[7]  T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annual Review of Biomedical Engineering, vol. 9, no. 1, pp. 527–565, 2007.
[8]  M. Hallett, “Transcranial magnetic stimulation: a primer,” Neuron, vol. 55, no. 2, pp. 187–199, 2007.
[9]  F. Rachid and G. Bertschy, “Safety and efficacy of repetitive transcranial magnetic stimulation in the treatment of depression: a critical appraisal of the last 10 years,” Clinical Neurophysiology, vol. 36, no. 3, pp. 157–183, 2006.
[10]  Z. Daskalakis, B. Christensen, P. Fitzgerald, and R. Chen, “Transcranial magnetic stimulation: a new investigational and treatment tool in psychiatry,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 14, no. 4, pp. 406–415, 2002.
[11]  M. Hallett, “Transcranial magnetic stimulation: a primer,” Neuron, vol. 55, no. 2, pp. 187–199, 2007.
[12]  U. Ziemann, “TMS induced plasticity in human cortex,” Reviews in the Neurosciences, vol. 15, no. 4, pp. 253–266, 2004.
[13]  E. M. Wassermann, “Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation,” Electroencephalography and Clinical Neurophysiology, vol. 108, no. 1, pp. 1–16, 1998.
[14]  K. Machii, D. Cohen, C. Ramos-Estebanez, and A. Pascual-Leone, “Safety of rTMS to non-motor cortical areas in healthy participants and patients,” Clinical Neurophysiology, vol. 117, no. 2, pp. 455–471, 2006.
[15]  Y. Levkovitz, Y. Roth, E. V. Harel, Y. Braw, A. Sheer, and A. Zangen, “A randomized controlled feasibility and safety study of deep transcranial magnetic stimulation,” Clinical Neurophysiology, vol. 118, no. 12, pp. 2730–2744, 2007.
[16]  S. Rossi, M. Hallett, P. M. Rossini, and A. Pascual-Leone, “Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research,” Clinical Neurophysiology, vol. 120, no. 12, pp. 2008–2039, 2009.
[17]  C. K. Loo, T. F. McFarquhar, and P. B. Mitchell, “A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression,” International Journal of Neuropsychopharmacology, vol. 11, no. 1, pp. 131–147, 2008.
[18]  U. Ziemann, S. Lonnecker, and W. Paulus, “Inhibition of human motor cortex by ethanol,” Brain, vol. 118, no. 6, pp. 1437–1446, 1995.
[19]  S. K?hk?nen, M. Kes?niemi, V. V. Nikouline et al., “Ethanol modulates cortical activity: direct evidence with combined TMS and EEG,” NeuroImage, vol. 14, no. 2, pp. 322–328, 2001.
[20]  S. K?hk?nen, J. Wilenius, V. V. Nikulin, M. Ollikainen, and R. J. Ilmoniemi, “Alcohol reduces prefrontal cortical excitability in humans: a combined TMS and EEG study,” Neuropsychopharmacology, vol. 28, no. 4, pp. 747–754, 2003.
[21]  A. Conte, M. L. Attilia, F. Gilio et al., “Acute and chronic effects of ethanol on cortical excitability,” Clinical Neurophysiology, vol. 119, no. 3, pp. 667–674, 2008.
[22]  R. Nardone, J. Bergmann, M. Kronbichler et al., “Altered motor cortex excitability to magnetic stimulation in alcohol withdrawal syndrome,” Alcoholism, vol. 34, no. 4, pp. 628–632, 2010.
[23]  N. Lang, A. Hasan, E. Sueske, W. Paulus, and M. A. Nitsche, “Cortical hypoexcitability in chronic smokers? A transcranial magnetic stimulation study,” Neuropsychopharmacology, vol. 33, no. 10, pp. 2517–2523, 2008.
[24]  P. B. Fitzgerald, S. Williams, and Z. J. Daskalakis, “A transcranial magnetic stimulation study of the effects of cannabis use on motor cortical inhibition and excitability,” Neuropsychopharmacology, vol. 34, no. 11, pp. 2368–2375, 2009.
[25]  M. Oliveri and G. Calvo, “Increased visual cortical excitability in ecstasy users: a transcranial magnetic stimulation study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 74, no. 8, pp. 1136–1138, 2003.
[26]  N. N. Boutros, S. H. Lisanby, H. Tokuno et al., “Elevated motor threshold in drug-free, cocaine-dependent patients assessed with transcranial magnetic stimulation,” Biological Psychiatry, vol. 49, no. 4, pp. 369–373, 2001.
[27]  N. N. Boutros, S. H. Lisanby, D. McClain-Furmanski, G. Oliwa, D. Gooding, and T. R. Kosten, “Cortical excitability in cocaine-dependent patients: a replication and extension of TMS findings,” Journal of Psychiatric Research, vol. 39, no. 3, pp. 295–302, 2005.
[28]  K. Sundaresan, U. Ziemann, J. Stanley, and N. Boutros, “Cortical inhibition and excitation in abstinent cocaine-dependent patients: a transcranial magnetic stimulation study,” NeuroReport, vol. 18, no. 3, pp. 289–292, 2007.
[29]  P. M. Rossini and S. Rossi, “Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential,” Neurology, vol. 68, no. 7, pp. 484–488, 2007.
[30]  Z. J. Daskalakis, B. M?ller, B. K. Christensen, P. B. Fitzgerald, C. Gunraj, and R. Chen, “The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects,” Experimental Brain Research, vol. 174, no. 3, pp. 403–412, 2006.
[31]  P. B. Fitzgerald, S. Fountain, and Z. J. Daskalakis, “A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition,” Clinical Neurophysiology, vol. 117, no. 12, pp. 2584–2596, 2006.
[32]  M. Kanno, M. Matsumoto, H. Togashi, M. Yoshioka, and Y. Mano, “Effects of acute repetitive transcranial magnetic stimulation on dopamine release in the rat dorsolateral striatum,” Journal of the Neurological Sciences, vol. 217, no. 1, pp. 73–81, 2004.
[33]  M. E. Keck, T. Welt, M. B. Müller et al., “Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system,” Neuropharmacology, vol. 43, no. 1, pp. 101–109, 2002.
[34]  A. P. Strafella, T. Paus, J. Barrett, and A. Dagher, “Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus,” The Journal of Neuroscience, vol. 21, no. 15, p. RC157, 2001.
[35]  S. S. Cho and A. P. Strafella, “rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex,” PLoS ONE, vol. 4, no. 8, Article ID e6725, 2009.
[36]  P. B. Fitzgerald, A. Sritharan, Z. J. Daskalakis, A. R. de Castella, J. Kulkarni, and G. Egan, “A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression,” Journal of Clinical Psychopharmacology, vol. 27, no. 5, pp. 488–492, 2007.
[37]  M. Bortolomasi, A. Minelli, G. Fuggetta et al., “Long-lasting effects of high frequency repetitive transcranial magnetic stimulation in major depressed patients,” Psychiatry Research, vol. 150, no. 2, pp. 181–186, 2007.
[38]  S. Kito, K. Fujita, and Y. Koga, “Regional cerebral blood flow changes after low-frequency transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in treatment-resistant depression,” Neuropsychobiology, vol. 58, no. 1, pp. 29–36, 2008.
[39]  S. H. Lisanby, M. M. Husain, P. B. Rosenquist et al., “Daily left prefrontal repetitive transcranial magnetic stimulation in the acute treatment of major depression: clinical predictors of outcome in a multisite, randomized controlled clinical trial,” Neuropsychopharmacology, vol. 34, no. 2, pp. 522–534, 2009.
[40]  B. D. Greenberg, U. Ziemann, G. Corá-Locatelli et al., “Altered cortical excitability in obsessive-compulsive disorder,” Neurology, vol. 54, no. 1, pp. 142–147, 2000.
[41]  P. Alonso, J. Pujol, N. Cardoner et al., “Right prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a double-blind, placebo-controlled study,” The American Journal of Psychiatry, vol. 158, no. 7, pp. 1143–1145, 2001.
[42]  S.-H. Lee, W. Kim, Y.-C. Chung et al., “A double blind study showing that two weeks of daily repetitive TMS over the left or right temporoparietal cortex reduces symptoms in patients with schizophrenia who are having treatment-refractory auditory hallucinations,” Neuroscience Letters, vol. 376, no. 3, pp. 177–181, 2005.
[43]  Y. Jin, S. G. Potkin, A. S. Kemp et al., “Therapeutic effects of individualized alpha frequency transcranial magnetic stimulation (αTMS) on the negative symptoms of schizophrenia,” Schizophrenia Bulletin, vol. 32, no. 3, pp. 556–561, 2006.
[44]  N. Goyal, S. H. Nizamie, and P. Desarkar, “Efficacy of adjuvant high frequency repetitive transcranial magnetic stimulation on negative and positive symptoms of schizophrenia: preliminary results of a double-blind sham-controlled study,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 19, no. 4, pp. 464–467, 2007.
[45]  A. Stanford, Z. Sharif, C. Corcoran, N. Urban, D. Malaspina, and S. H. Lisanby, “rTMS strategies for the study and treatment of schizophrenia: a review,” International Journal of Neuropsychopharmacology, vol. 11, no. 4, pp. 563–576, 2008.
[46]  M. Johann, R. Wiegand, A. Kharraz et al., “Repetitiv transcranial magnetic stimulation in nicotine dependence,” Psychiatrische Praxis, vol. 30, supplement 2, pp. S129–S131, 2003.
[47]  P. Eichhammer, M. Johann, A. Kharraz et al., “High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking,” Journal of Clinical Psychiatry, vol. 64, no. 8, pp. 951–953, 2003.
[48]  R. Amiaz, D. Levy, D. Vainiger, L. Grunhaus, and A. Zangen, “Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption,” Addiction, vol. 104, no. 4, pp. 653–660, 2009.
[49]  V. C. Wing, I. Bacher, B. S. Wu, Z. J. Daskalakis, and T. P. George, “High frequency repetitive transcranial magnetic stimulation reduces tobacco craving in schizophrenia,” Schizophrenia Research, vol. 139, no. 1, pp. 266–266, 2012.
[50]  J. E. Rose, F. J. McClernon, B. Froeliger, F. M. Behm, X. Preud'Homme, and A. D. Krystal, “Repetitive transcranial magnetic stimulation of the superior frontal gyrus modulates craving for cigarettes,” Biological Psychiatry, vol. 70, no. 8, pp. 794–799, 2011.
[51]  B. R. Mishra, S. H. Nizamie, B. Das, and S. K. Praharaj, “Efficacy of repetitive transcranial magnetic stimulation in alcohol dependence: a sham-controlled study,” Addiction, vol. 105, no. 1, pp. 49–55, 2010.
[52]  S. C. Herremans, C. Baeken, N. Vanderbruggen et al., “No influence of one right-sided prefrontal HF-rTMS session on alcohol craving in recently detoxified alcohol-dependent patients: results of a naturalistic study,” Drug and Alcohol Dependence, vol. 120, no. 1–3, pp. 209–213, 2012.
[53]  J. H?ppner, T. Broese, L. Wendler, C. Berger, and J. Thome, “Repetitive transcranial magnetic stimulation (rTMS) for treatment of alcohol dependence,” World Journal of Biological Psychiatry, vol. 12, no. 1, pp. 57–62, 2011.
[54]  D. de Ridder, S. Vanneste, S. Kovacs, S. Sunaert, and G. Dom, “Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study,” Neuroscience Letters, vol. 496, no. 1, pp. 5–10, 2011.
[55]  J. A. Camprodon, J. Martínez-Raga, M. Alonso-Alonso, M.-C. Shih, and A. Pascual-Leone, “One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving,” Drug and Alcohol Dependence, vol. 86, no. 1, pp. 91–94, 2007.
[56]  E. Politi, E. Fauci, A. Santoro, and E. Smeraldi, “Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving,” The American Journal on Addictions, vol. 17, no. 4, pp. 345–346, 2008.
[57]  S. E. Hyman, R. C. Malenka, and E. J. Nestler, “Neural mechanisms of addiction: the role of reward-related learning and memory,” Annual Review of Neuroscience, vol. 29, no. 1, pp. 565–598, 2006.
[58]  L. J. M. J. Vanderschuren and P. W. Kalivas, “Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies,” Psychopharmacology, vol. 151, no. 2-3, pp. 99–120, 2000.
[59]  M. E. Wolf, X. Sun, S. Mangiavacchi, and S. Z. Chao, “Psychomotor stimulants and neuronal plasticity,” Neuropharmacology, vol. 47, supplement 1, pp. 61–79, 2004.
[60]  P. W. Kalivas and C. O'Brien, “Drug addiction as a pathology of staged neuroplasticity,” Neuropsychopharmacology, vol. 33, no. 1, pp. 166–180, 2008.
[61]  J. A. Kauer and R. C. Malenka, “Synaptic plasticity and addiction,” Nature Reviews Neuroscience, vol. 8, no. 11, pp. 844–858, 2007.
[62]  B. J. Everitt, D. Belin, D. Economidou, Y. Pelloux, J. W. Dalley, and T. W. Robbins, “Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1507, pp. 3125–3135, 2008.
[63]  A. E. Rorie and W. T. Newsome, “A general mechanism for decision-making in the human brain?” Trends in Cognitive Sciences, vol. 9, no. 2, pp. 41–43, 2005.
[64]  S. H. Mitchell, “Measuring impulsivity and modeling its association with cigarette smoking,” Behavioral and cognitive Neuroscience Reviews, vol. 3, no. 4, pp. 261–275, 2004.
[65]  D. Knoch, L. R. R. Gianotti, A. Pascual-Leone et al., “Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior,” Journal of Neuroscience, vol. 26, no. 24, pp. 6469–6472, 2006.
[66]  V. C. Wing, M. S. Barr, C. E. Wass et al., “Brain stimulation methods to treat tobacco addiction,” Brain Stimulation, vol. 6, no. 3, pp. 221–230, 2012.
[67]  M. S. Barr, P. B. Fitzgerald, F. Farzan, T. P. George, and Z. J. Daskalakis, “Transcranial magnetic stimulation to understand the pathophysiology and treatment of substance use disorders,” Current Drug Abuse Reviews, vol. 1, no. 3, pp. 328–339, 2008.
[68]  R. Nardone, J. Bergmann, P. Lochner, et al., “Non-invasive brain stimulation in the functional evaluation of alcohol effects and in the treatment of alcohol craving: a review,” Neuroscience Research, vol. 74, no. 3-4, pp. 169–176, 2012.
[69]  S. C. Herremans and C. Baeken, “The current perspective of neuromodulation techniques in the treatment of alcohol addiction: a systematic review,” Psychiatria Danubina, vol. 24, supplement 1, pp. S14–S20, 2012.
[70]  P. B. Fitzgerald and Z. J. Daskalakis, “A practical guide to the use of repetitive transcranial magnetic stimulation in the treatment of depression,” Brain Stimulation, vol. 5, no. 3, pp. 287–296, 2012.
[71]  A. A. Gershon, P. N. Dannon, and L. Grunhaus, “Transcranial magnetic stimulation in the treatment of depression,” The American Journal of Psychiatry, vol. 160, no. 5, pp. 835–845, 2003.
[72]  M. S. Barr, F. Farzan, V. C. Wing, T. P. George, P. B. Fitzgerald, and Z. J. Daskalakis, “Repetitive transcranial magnetic stimulation and drug addiction,” International Review of Psychiatry, vol. 23, no. 5, pp. 454–466, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413