全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation

DOI: 10.1155/2014/568141

Full-Text   Cite this paper   Add to My Lib

Abstract:

Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF) for α-amylase production has been used in lieu of submerged fermentation (SmF) due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30–70% (NH4)2SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques. 1. Introduction Amylase catalyses the breakdown of starch into sugars. α-Amylase can breakdown long-chain carbohydrates, ultimately yielding maltose from amylose, or maltose, glucose, and “limit dextrin” from amylopectin. Amylases are produced by a wide spectrum of organisms, although each source produces biochemical phenotypes that significantly differ in parameters like pH and temperature optima as well as metal ion requirements [1]. Till date, two major classes of amylases have been identified in microorganisms, namely, α-amylase and glucoamylase. α-Amylases (endo-1,4-a-D-glucan glucohydrolase) are extracellular enzymes that randomly cleave the 1,4-a-D-glucosidic linkages between adjacent glucose units in the linear amylase chain. Glucoamylase (exo-1,4-a-D-glucan glucanohydrolase) hydrolyzes single glucose units from the nonreducing ends of amylose and amylopectin in a stepwise manner [1, 2]. These are calcium metalloenzymes, which are completely unable to function in the absence of calcium. Calcium stabilizes the interface between the central A domain (291 residues) with (β/α)8 barrel structure and the more variable B domain (104 to 206 residues) [3–7]. Because of its multifarious application amylase attracts attention of researchers since decades after its first isolation and identification in the

References

[1]  A. Rameshkumar and T. Sivasudha, “Optimization of nutritional constitute for enhanced α-amylase production by solid state fermentation technology,” International Journal of Microbiological Research, vol. 2, no. 2, p. 148, 2011.
[2]  P. Nigam and D. Singh, “Enzyme and microbial systems involved in starch processing,” Enzyme and Microbial Technology, vol. 17, no. 9, pp. 770–778, 1995.
[3]  A. Burhan, U. Nisa, C. G?khan, C. ?mer, A. Ashabil, and G. Osman, “Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6,” Process Biochemistry, vol. 38, no. 10, pp. 1397–1403, 2003.
[4]  B. A. Levine and R. J. P. Williams, “Calcium binding to proteins and other large biological anion centers,” in Calcium and Cell Function, W. Y. Cheung, Ed., pp. 1–38, Academic Press, New York, NY, USA, 1982.
[5]  C. B. Klee and T. C. Vanaman, “Calmodulin,” Advances in Protein Chemistry, vol. 35, pp. 213–321, 1982.
[6]  A. Kadziola, J.-I. Abe, B. Svensson, and R. Haser, “Crystal and molecular structure of barley α-amylase,” Journal of Molecular Biology, vol. 239, no. 1, pp. 104–121, 1994.
[7]  E. A. MacGregor, “α-Amylase structure and activity,” Journal of Protein Chemistry, vol. 7, no. 4, pp. 399–415, 1988.
[8]  W. Crueger and A. Crueger, Eds., Industrial Microbiology, Sinauer Associates, Sunderland, Mass, USA, 1989.
[9]  G. Rajagopalan and C. Krishnan, “α-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate,” Bioresource Technology, vol. 99, no. 8, pp. 3044–3050, 2008.
[10]  N. S. Reddy, A. Nimmagadda, and K. R. S. S. Rao, “An overview of the microbial α-amylase family,” African Journal of Biotechnology, vol. 2, no. 12, pp. 645–648, 2003.
[11]  R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan, “Microbial α-amylases: a biotechnological perspective,” Process Biochemistry, vol. 38, no. 11, pp. 1599–1616, 2003.
[12]  L. Kandra, “α-Amylases of medical and industrial importance,” Journal of Molecular Structure: THEOCHEM, vol. 666-667, pp. 487–498, 2003.
[13]  A. Pandey, P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan, “Advances in microbial amylases,” Biotechnology and Applied Biochemistry, vol. 31, no. 2, pp. 135–152, 2000.
[14]  R. K. Saxena, K. Dutt, L. Agarwal, and P. Nayyar, “A highly thermostable and alkaline amylase from a Bacillus sp. PN5,” Bioresource Technology, vol. 98, no. 2, pp. 260–265, 2007.
[15]  M. Asgher, M. J. Asad, S. U. Rahman, and R. L. Legge, “A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing,” Journal of Food Engineering, vol. 79, no. 3, pp. 950–955, 2007.
[16]  L. M. Hamilton, C. T. Kelly, and W. M. Fogarty, “Production and properties of the raw starch-digesting α-amylase of Bacillus sp. IMD 435,” Process Biochemistry, vol. 35, no. 1-2, pp. 27–31, 1999.
[17]  N. Goyal, J. K. Gupta, and S. K. Soni, “A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch,” Enzyme and Microbial Technology, vol. 37, no. 7, pp. 723–734, 2005.
[18]  K. Schwab, J. Bader, C. Brokamp, M. K. Popovi?, R. Bajpai, and M. Berovi?, “Dual feeding strategy for the production of α-amylase by Bacillus caldolyticus using complex media,” New Biotechnology, vol. 26, no. 1-2, pp. 68–74, 2009.
[19]  I.-U. Haq, H. Ashraf, J. Iqbal, and M. A. Qadeer, “Production of alpha amylase by Bacillus licheniformis using an economical medium,” Bioresource Technology, vol. 87, no. 1, pp. 57–61, 2003.
[20]  S. R. Couto and M. á. Sanromán, “Application of solid-state fermentation to food industry-a review,” Journal of Food Engineering, vol. 76, no. 3, pp. 291–302, 2006.
[21]  A. Pandey, “Solid-state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 81–84, 2003.
[22]  M. S. Tanyildizi, D. ?zer, and M. Elibol, “Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation,” Biochemical Engineering Journal, vol. 37, no. 3, pp. 294–297, 2007.
[23]  V. H. Mulimani and G. N. P. Ramalingam, “α-Amylase production by solid state fermentation: a new practical approach to biotechnology courses,” Biochemical Education, vol. 28, no. 3, pp. 161–163, 1999.
[24]  J. Shukla and R. Kar, “Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates,” World Journal of Microbiology and Biotechnology, vol. 22, no. 5, pp. 417–422, 2006.
[25]  P. Vijayabaskar, D. Jayalakshmi, and T. Shankar, “Amylase production by moderately halophilic Bacillus cereus in solid state fermentation,” African Journal of MiCrobiology Research, vol. 6, pp. 4918–4926, 2012.
[26]  Z. Baysal, F. Uyar, and ?. Aytekin, “Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water,” Process Biochemistry, vol. 38, no. 12, pp. 1665–1668, 2003.
[27]  A. K. Mukherjee, M. Borah, and S. K. Rai, “To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent formulations,” Biochemical Engineering Journal, vol. 43, no. 2, pp. 149–156, 2009.
[28]  H. K. Sodhi, K. Sharma, J. K. Gupta, and S. K. Soni, “Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production,” Process Biochemistry, vol. 40, no. 2, pp. 525–534, 2005.
[29]  S. K. Soni, A. Kaur, and J. K. Gupta, “A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch,” Process Biochemistry, vol. 39, no. 2, pp. 185–192, 2003.
[30]  O. H. Lowry, N. J. Rosenbrough, A. I. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[31]  G. L. Miller, “Use of dinitrosalisylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–429, 1959.
[32]  N. Bo?i?, J. Ruiz, J. López-Santín, and Z. Vuj?i?, “Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a,” Biochemical Engineering Journal, vol. 53, no. 2, pp. 203–209, 2011.
[33]  Y.-H. Liu, F.-P. Lu, Y. Li, J.-L. Wang, and C. Gao, “Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations,” Applied Microbiology and Biotechnology, vol. 80, no. 5, pp. 795–803, 2008.
[34]  V. N. Ivanova, E. P. Dobreva, and E. I. Emanuilova, “Purification and characterization of a thermostable alpha-amylase from Bacillus licheniformis,” Journal of Biotechnology, vol. 28, no. 2-3, pp. 277–289, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413