Maize is an economic crop that is also a candidate for use in phytoremediation in low-to-moderately Cd-contaminated soils, because the plant can accumulate high concentration of Cd in parts that are nonedible to humans while accumulating only a low concentration of Cd in the fruit. Maize cultivars CT38 and HZ were planted in field soils contaminated with Cd and nitrilotriacetic acid (NTA) was used to enhance the phytoextractive effect of the maize. Different organs of the plant were analyzed to identify the Cd sinks in the maize. A distinction was made between leaf sheath tissue and leaf lamina tissue. Cd concentrations decreased in the tissues in the following order: sheath > root > lamina > stem > fruit. The addition of NTA increased the amount of Cd absorbed but left the relative distribution of the metal among the plant organs essentially unchanged. The Cd in the fruit of maize was below the Chinese government’s permitted concentration in coarse cereals. Therefore, this study shows that it is possible to conduct maize phytoremediation of Cd-contaminated soil while, at the same time, harvesting a crop, for subsequent consumption. 1. Introduction Heavy metal contamination of agricultural soils is a worldwide problem [1], and in China the problem is especially serious. If all of the low- or moderately-contaminated croplands were removed from agriculture production, then it would be impossible to meet the Chinese people’s food needs. Cadmium (Cd) is one of the most mobile and bioavailable heavy metals in soil and can have eco-toxicological impacts on many organisms, including humans, plants, and animals, even at low concentrations [2, 3]. Maize is a familiar agricultural crop that is widely adapted to regions of China and can be cultivated easily. It has greater dry-mass than many heavy metal hyperaccumulative plants, such as Thlaspi caerulescens and Arabidopsis halleri. The roots and straws of maize can accumulate many kinds of heavy metals, including Cd, from contaminated soil. Fortunately, the seeds and fruits from maize generally accumulate metals at lower concentrations than leaves or roots [1]. After harvesting seeds and/or fruits from the plants, the straw, and roots, with their load of toxic metals, can be removed from the contaminated soil. With each successive growth cycle, the contaminated soil becomes cleaner than before. One of the species used in the present study was sweet maize CT38, which was screened from many maize cultivars as an optimal cultivar for heavy metal by pot test [4]. The other cultivar was sweet maize HZ, which was the
References
[1]
E. F?ssler, B. H. Robinson, S. K. Gupta, and R. Schulin, “Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions,” Nutrient Cycling in Agroecosystems, vol. 87, no. 3, pp. 339–352, 2010.
[2]
M. G. Palmgren, S. Clemens, L. E. Williams et al., “Zinc biofortification of cereals: problems and solutions,” Trends in Plant Science, vol. 13, no. 9, pp. 464–473, 2008.
[3]
J. Ingwersen and T. Streck, “A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling,” Journal of Environmental Quality, vol. 34, no. 3, pp. 1026–1035, 2005.
[4]
J. M. Zhou, Chelate-Induced Phytoextraction of Soils Contaminated with Heavy Metals and Its Environmental Risk, South China University of Technology, Guangzhou, China, 2006.
[5]
Z. Y. Hseu, S. H. Jien, S. H. Wang, and H. W. Deng, “Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach,” Journal of Environmental Management, vol. 117, pp. 58–64, 2013.
[6]
M. W. H. Evangelou, M. Ebel, and A. Schaeffer, “Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents,” Chemosphere, vol. 68, no. 6, pp. 989–1003, 2007.
[7]
K.-H. Hsiao, P.-H. Kao, and Z.-Y. Hseu, “Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction,” Journal of Hazardous Materials, vol. 148, no. 1-2, pp. 366–376, 2007.
[8]
D. Le?tan, C.-L. Luo, and X.-D. Li, “The use of chelating agents in the remediation of metal-contaminated soils: a review,” Environmental Pollution, vol. 153, no. 1, pp. 3–13, 2008.
[9]
S. Tandy, R. Schulin, and B. Nowack, “Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration,” Environmental Science & Technology, vol. 40, no. 8, pp. 2753–2758, 2006.
[10]
G. Mühlbachová, “Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS,” Ecological Engineering, vol. 37, no. 7, pp. 1064–1071, 2011.
[11]
C. Luo, Z. Shen, L. Lou, and X. Li, “EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds,” Environmental Pollution, vol. 144, no. 3, pp. 862–871, 2006.
[12]
M. F. Quartacci, B. Irtelli, A. J. M. Baker, and F. Navari-Izzo, “The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata,” Chemosphere, vol. 68, no. 10, pp. 1920–1928, 2007.
[13]
J. M. Zhou, Z. Dang, N. C. Chen, S. G. Xu, and Z. Y. Xie, “Influence of NTA on accumulation and chemical form of copper and zinc in maize,” Journal of Agro-Environment Science, vol. 26, pp. 453–457, 2007.
[14]
A. Cao, A. Carucci, T. Lai, P. La Colla, and E. Tamburini, “Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria,” European Journal of Soil Biology, vol. 43, no. 4, pp. 200–206, 2007.
[15]
H. Gr?man, D. Vodnik, ?. Velikonja-Bolta, and D. Le?tan, “Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction,” Journal of Environmental Quality, vol. 32, no. 2, pp. 500–506, 2003.
[16]
J. C. Lan, S. R. Zhang, H. C. Lin et al., “Efficiency of biodegradable EDDS NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils,” Chemosphere, vol. 91, pp. 1362–1367, 2013.
[17]
L. Zhang, L. Zhang, and F. Song, “Cadmium uptake and distribution by different maize genotypes in maturing stage,” Communications in Soil Science and Plant Analysis, vol. 39, no. 9-10, pp. 1517–1531, 2008.
[18]
Y. Huang, Y. Chen, and S. Tao, “Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere,” Chinese Journal of Applied Ecology, vol. 13, no. 7, pp. 859–862, 2002.
[19]
Y. Cao, R. Huang, J. Li, T. Zhao, W. Guo, and G. Wang, “Cadmium absorption characteristics of Zea mays under combined stress of lead and cadmium,” Chinese Journal of Ecology, vol. 25, no. 11, pp. 1425–1427, 2006.
[20]
S. Y. Feng, Z. M. Qi, G. H. Huang, and G. Cha, “Field experimental study on the residue of heavy metal in summer corn,” Journal of Irrigation and Drainage, vol. 22, pp. 9–13, 2003.
[21]
J. Li, Y. L. Yi, L. L. Li, D. G. Zhang, J. Li, and Y. Jiao, “Distribution of heavy metal (CdPbCuZn) in different organs of maize,” Chinese Agricultural Science Bulletion, vol. 22, pp. 244–247, 2006.
[22]
Q. R. Wang, X. M. Liu, Y. T. Dong, and Y. S. Cui, “Contamination and characters of vegetation polluted by heavy metals in typical industrial regions subjected to sewage as irrigation,” Agro-Environmental Protection, vol. 21, no. 2, pp. 115–118, 149, 2002.
[23]
M. L. Brenner, “The role of hormones in photosynthate partitioning and seed filling,” in Plant Hormones and Their Role in Plant Growth and Development, P. J. Davies, Ed., pp. 474–493, Kluwer Academic Publishers, Dodrecht, The Netherlands, 1995.
[24]
R. J. Jones and M. L. Brenner, “Distribution of abscisic acid in maize kernel during grain filling,” Plant Physiology, no. 83, pp. 905–909, 1987.
[25]
Health Ministry, C., “Maximum levels of contaminants in food,” In 2005; Vol. GB 2762-2005.
[26]
A. Durbak, H. Yao, and P. McSteen, “Hormone signaling in plant development,” Current Opinion in Plant Biology, vol. 15, no. 1, pp. 92–96, 2012.
[27]
A. Kayser, K. Wenger, A. Keller et al., “Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments,” Environmental Science & Technology, vol. 34, no. 9, pp. 1778–1783, 2000.
[28]
M. F. Quartacci, A. Argilla, A. J. M. Baker, and F. Navari-Izzo, “Phytoextraction of metals from a multiply contaminated soil by Indian mustard,” Chemosphere, vol. 63, no. 6, pp. 918–925, 2006.
[29]
K. Wenger, S. K. Gupta, G. Furrer, and R. Schulin, “Zinc extraction potential of two common crop plants, Nicotiana tabacum and Zea mays,” Plant and Soil, vol. 242, no. 2, pp. 217–225, 2002.
[30]
V. Angelova, R. Ivanova, and K. Ivanov, “Heavy metal accumulation and distribution in oil crops,” Communications in Soil Science and Plant Analysis, vol. 35, no. 17-18, pp. 2551–2566, 2004.
[31]
T. Amon, B. Amon, V. Kryvoruchko et al., “Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations,” Bioresource Technology, vol. 98, no. 17, pp. 3204–3212, 2007.
[32]
L. A. Licht and J. G. Isebrands, “Linking phytoremediated pollutant removal to biomass economic opportunities,” Biomass & Bioenergy, vol. 28, no. 2, pp. 203–218, 2005.
[33]
K. K. Meher, A. M. Panchwagh, S. Rangrass, and K. G. Gollakota, “Biomethanation of tobacco waste,” Environmental Pollution, vol. 90, no. 2, pp. 199–202, 1995.
[34]
J. A. Langdale, B. Lane, M. Freeling, and T. Nelson, “Cell lineage analysis of maize bundle sheath and mesophyll cells,” Developmental Biology, vol. 133, no. 1, pp. 128–139, 1989.
[35]
M. Intawongse and J. R. Dean, “Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract,” Food Additives and Contaminants, vol. 23, no. 1, pp. 36–48, 2006.
[36]
G. Bertin and D. Averbeck, “Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review),” Biochimie, vol. 88, no. 11, pp. 1549–1559, 2006.
[37]
T. Redjala, I. Zelko, T. Sterckeman, V. Legué, and A. Lux, “Relationship between root structure and root cadmium uptake in maize,” Environmental and Experimental Botany, vol. 71, no. 2, pp. 241–248, 2011.
[38]
H. Marschner, Mineral Nutrition of Higher Plants, Academic Presser, Hartcourt Brace & Company, London, UK, 2nd edition, 1995.