Heterobimetallic complexes of Zn(II) and Sn(IV) with sarcosine have been synthesized at room temperature under stirring conditions by the reaction of sarcosine and zinc acetate in 2?:?1 molar ratio followed by the stepwise addition of CS2 and organotin(IV) halides, where R?=?Me, n-Bu, and Ph. The complexes were characterized by elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. IR data showed that the ligand acts in a bidentate manner. NMR data revealed the four coordinate geometry in solution state. In vitro antimicrobial activities data showed that complexes (3) and (4) were effective against bacterial and fungal strains with few exceptions. 1. Introduction Organotin compounds are amongst the most widely used organometallic compounds. Over the last several decades, they have been utilized for a variety of industrial and agricultural applications including pesticides, fungicide, and antifouling agents [1]. In general, the biochemical activity of organotin(IV) carboxylates is greatly influenced by the structure of the molecule and the coordination number of the tin atom [2, 3]. Therefore, the recognition of the importance between the biological properties and the structure of organotin(IV) carboxylates [4] has stimulated the study of carboxylates of tin. The diverse structural motifs are known in organotin compounds and attributed to the ambidentate character of the carboxylate ligands [5]. Steric and electronic attributes of organic substituents on tin and/or the carboxylate moiety impart significant influence on the structural characteristics in tin carboxylates. Therefore, synthesis of new organotin carboxylates with different structural features will be beneficial in the development of pharmaceutical organotin and in other properties and applications. Meanwhile, dithiocarbamate (DTC) is the ligand which strongly bonds with metal ions and can stabilize metal complexes with high oxidation number [6]. Organotin(IV) dithiocarbamate complexes have been widely studied due to Sn-S bond in their structure and the effects of the bonding on diversified applications basically in biological field [7, 8]. Zinc chloride is chiefly used as a catalyst for the Fischer indole synthesis and Friedel-Craft acylation reaction that was involved in the synthesis of organic??compounds used in the laboratory [9]. The medical applications of Zn(II) compounds include treatments of parasitic diseases (eczema, ringworm, fungus, and athletes foot), and in many biological processes zinc plays an important role as metalloenzymes in which Zn(II) is coordinated by a ligand
References
[1]
K. E. Appel, “Organotin compounds: toxicokinetic aspects,” Drug Metabolism Reviews, vol. 36, no. 3-4, pp. 763–786, 2004.
[2]
K. C. Molloy, T. G. Purcell, E. Hahn, H. Schumann, and J. J. Zuckerman, “Organotin biocides. 4. Crystal and molecular structure of tricyclohexylstannyl 3-indolylacetate, incorporating the first monodentate carboxylate group bonded to a triorganotin(IV),” Organometallics, vol. 5, no. 1, pp. 85–89, 1986.
[3]
R. R. Holmes, “Organotin cluster chemistry,” Accounts of Chemical Research, vol. 22, no. 5, pp. 190–197, 1989.
[4]
R. Barbieri, A. Silvestri, M. T. L. Giudice, G. Ruisi, and M. T. Musmeci, “The binding of trialkyltin(IV) moieties to rat haemoglobin, and the structure of model systems, studied by tin-119 M?ssbauer spectroscopy,” Journal of the Chemical Society, Dalton Transactions, no. 3, pp. 519–525, 1989.
[5]
S. Sadiq-Ur-Rehman, K. Shahid, S. Ali, M. H. Bhatti, and M. Parvez, “Organotin esterification of (E)-3-(3-fluoro-phenyl)-2-(4-chlorophenyl)-2-propenoic acid: synthesis, spectroscopic characterization and in vitro biological activities. Crystal structure of [Ph3Sn(OC(O)C(4-ClC6H4)?=?CH(3-FC6H4))],” Journal of Organometallic Chemistry, vol. 690, no. 5, pp. 1396–1408, 2005.
[6]
P. J. Heard, Progress in Inorganic Chemistry, vol. 53, John Wiley & Sons, New York, NY, USA, 2005, edited by D. Karlin.
[7]
S. H. L. Thoonen, B. Deelman, and G. van Koten, “Synthetic aspects of tetraorganotins and organotin(IV) halides,” Journal of Organometallic Chemistry, vol. 689, no. 13, pp. 2145–2157, 2004.
[8]
H. Hussain, V. U. Ahmad, I. R. Green, K. Krohn, J. Hussain, and A. Badshah, “Antibacterial organotin(IV) compounds, their synthesis and spectral characterization,” Arkivoc, vol. 2007, no. 14, pp. 289–299, 2007.
[9]
S. Y. Dike, J. R. Merchant, and N. Y. Sapre, “A new and efficient general method for the synthesis of 2-spirobenzopyrans: first synthesis of cyclic analogues of precocene I and related compound,” Tetrahedron, vol. 47, no. 26, pp. 4775–4786, 1991.
[10]
L. E. da Silva, P. T. de Sousa Jr., A. C. Joussef, C. Piovezan, and A. Neves, “Synthesis, structure and physicochemical properties of zinc and copper complexes based on sulfonamides containing 8-aminoquinoline ligands,” Química Nova, vol. 31, no. 5, pp. 1161–1164, 2008.
[11]
J. Anwer, S. Ali, S. Shahzadi, M. Shahid, S. K. Sharma, and K. Qanungo, “Synthesis, characterization, semi-empirical study and biological activities of homobimetallic complexes of tranexamic acid with organotin(IV),” Journal of Coordination Chemistry, vol. 66, no. 7, pp. 1142–1152, 2013.
[12]
S. Jabbar, I. Shahzadi, R. Rehman et al., “Synthesis, characterization, semi-empirical study and biological activities of organotin(IV) complexes with cyclohexylcarbamodithioic acid as biological active ligand,” Journal of Coordination Chemistry, vol. 65, no. 4, pp. 572–590, 2012.
[13]
H. N. Khan, S. Ali, S. Shahzadi, and M. Helliwell, “Synthesis, spectroscopy and antimicrobial activity of chloro-organotin(IV) complexes of S-donor ligand: crystal structure of chloro-t-dibutyltin[4-methyl-1-piperidine]thiocarboxylate,” Russian Journal of Inorganic Chemistry, vol. 57, no. 5, pp. 665–670, 2012.
[14]
F. A. Shah, A. Ali, S. Shahzadi, C. Rizzoli, and A. Ahmad, “Synthesis, spectral characterization and X-ray crystal structure of biologically active organotin(IV) 3-[(3′, 5′-dimethylphenylamido)]propanoates,” Journal of Iranian Chemical Society, vol. 9, no. 6, pp. 923–932, 2012.
[15]
M. M. Amin, S. Ali, S. Shahzadi, S. K. Sharma, and K. Qanungo, “Di- and triorganotin(IV) complexes of 2-aminobenzoic acid with and without triphenylphosphine: synthesis, spectroscopy, semi-empirical study, and antimicrobial activities,” Journal of Coordination Chemistry, vol. 64, no. 2, pp. 337–350, 2011.
[16]
E. Khoo, N. K. Goh, G. Eng, D. J. Whalen, and A. Hzell, “Synthesis, characterization and fungicidal activity of triphenyl derivatives of sarcosine: crystal structures of [Ph3Sn(OCOCH2NH2CHB)2]Cl and [Ph3(OCOCH2NH2CH3)2]NCS,” Applied Organometallic Chemistry, vol. 9, no. 8, pp. 699–706, 1995.
[17]
D. Kovala-Demertzi, P. Tauridou, A. Moukarika, J. M. Tsangaris, C. P. Raptopoulou, and A. Terzis, “Synthesis and characterization of tin(IV) and organotin(IV) 1,4-dimethylpiperazine-2,5-dione (cyclosarcosylsarcosine) adducts,” Journal of the Chemical Society, Dalton Transactions, no. 1, pp. 123–128, 1995.
[18]
L. Ronconi, C. Marzano, U. Russo, S. Sitran, R. Graziani, and D. Fregona, “Synthesis, characterization and in vitro cytotoxicity of new organotin(IV) derivatives of N-methylglycine,” Journal of Inorganic Biochemistry, vol. 91, no. 2, pp. 413–420, 2002.
[19]
W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals, Elsevier, Burlington, Vt, USA, 6th edition, 2000.
[20]
W. D. Honnick and J. J. Zuckerman, “Diorganotin halide carboxylates, thiocarboxylates and halide haloacetates,” Journal of Organometallic Chemistry, vol. 178, no. 1, pp. 133–155, 1979.
[21]
E. R. T. Tiekink, “Structural chemistry of organotin carboxylates: a review of the crystallographic literature,” Applied Organometallic Chemistry, vol. 5, no. 1, pp. 1–23, 1991.
[22]
M. Nath, R. Jairath, G. Eng, X. Song, and A. Kumar, “Synthesis, spectral characterization and biological studies of some organotin(IV) complexes of l-proline, trans-hydroxy-l-proline and l-glutamine,” Spectrochimica Acta A, vol. 62, no. 4-5, pp. 1179–1187, 2005.
[23]
B. S. Hammes, M. T. Kieber-Emmons, J. A. Letizia et al., “Synthesis and characterization of several zinc(II) complexes containing the bulky heteroscorpionate ligand bis(5-tert-butyl-3-methylpyrazol-2-yl)acetate: relevance to the resting states of the zinc(II) enzymes thermolysin and carboxypeptidase A,” Inorganica Chimica Acta, vol. 346, pp. 227–238, 2003.
[24]
R. Singh and N. K. Kaushik, “Spectral and thermal studies with anti-fungal aspects of some organotin(IV) complexes with nitrogen and sulphur donor ligands derived from 2-phenylethylamine,” Spectrochimica Acta A, vol. 71, no. 2, pp. 669–675, 2008.
[25]
H. L. Singh and J. B. Singh, “Synthesis and characterization of new lead(II) and organotin(IV) complexes of schiff bases derived from histidine and methionine,” International Journal of Inorganic Chemistry, vol. 2012, Article ID 568797, 7 pages, 2012.
[26]
A. Saxena, J. P. Tandon, K. C. Molloy, and J. J. Zuckerman, “Tin(IV) complexes of tridentate schiff bases having ONS donor systems,” Inorganica Chimica Acta, vol. 63, no. C, pp. 71–74, 1982.
[27]
A. K. Saxena, H. B. Singh, and J. P. Tandon, “Synthesis and characterization of tin(IV) complexes of azines,” Synthesis Reactivity Inorganic and Metal-Organic Chemistry, vol. 10, pp. 117–136, 1980.
[28]
H. O. Kalinowski, S. Berger, and S. Brown, 13C NMR Spectroskopie, Thieme, Stuttgart, Germany, 1984.
[29]
S. Ali, F. Ahmad, M. Mazhar, A. Munir, and M. T. Masood, “Synthesis and spectral studies of di- and triorganotin(IV) complexes with 2-(6-methoxynaphthyl)propionic acid (naproxen),” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 32, no. 2, pp. 357–372, 2002.
[30]
J. Hole?ek, M. Nádvorník, K. Handlí?, and A. Ly?ka, “13C and 119Sn NMR spectra of Di-n-butyltin(IV) compounds,” Journal of Organometallic Chemistry, vol. 315, no. 3, pp. 299–308, 1986.
[31]
D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw-Hill, London, UK, 4th edition, 1987.
[32]
S. S. Konstantinovi?, B. C. Radovanovi?, S. P. Sovilj, and S. Stanojevi?, “Antimicrobial activity of some isatin-3-thiosemicarbazone complexes,” Journal of the Serbian Chemical Society, vol. 73, no. 1, pp. 7–13, 2008.
[33]
R. V. Singh, P. Chaudhary, S. Chauhan, and M. Swami, “Microwave-assisted synthesis, characterization and biological activities of organotin (IV) complexes with some thio schiff bases,” Spectrochimica Acta A, vol. 72, no. 2, pp. 260–268, 2009.
[34]
W. Rehman, M. K. Baloch, A. Badshah, and S. Ali, “Synthesis characterization and biological study of diorganotin(IV) complexes of monomethyl phthalate,” Spectrochimica Acta A, vol. 65, no. 3-4, pp. 689–694, 2006.
[35]
K. K. Chaturvedi and M. Goyal, “Antibacterial studies of 7-(α-substituted sulphonamido)methyl- and 7-(α-substituted sulphonamido)phenyl-8-hydroxyquinolines,” Journal of the Indian Chemical Society, vol. 61, no. 2, pp. 175–176, 1984.
[36]
H. L. Singh, B. Khungar, U. D. Tripaathi, and A. K. Varshney, “Spectral and antimicrobial studies of organotin(IV) complexes of bidentate schiff bases having nitrogen and sulphur donor systems,” Main Group Metal Chemistry, vol. 24, no. 1, pp. 5–12, 2001.
[37]
T. R. Fritsche, P. F. McDermott, T. R. Shryock, and R. D. Walker, “Agar dilution and disk diffusion susceptibility testing of Campylobacter spp.,” Journal of Clinical Microbiology, vol. 45, no. 8, pp. 2758–2759, 2007.
[38]
M. Jabeen, S. Ali, S. Shahzadi et al., “Homobimetallic complexes of ligand having O and S donor sites with same and different di- and trialkyl/aryltin(IV) moiety their synthesis, spectral characterization and biological activities,” Journal of Iranian Chemical Society, vol. 9, no. 3, pp. 307–320, 2012.
[39]
S. Shahzadi, K. Shahid, S. Ali, and M. Bakhtiar, “Characterization and antimicrobial activity of organotin(IV) complexes of 2-[(2′,6′-diethylphenylamido)]benzoates and 3-[(2′,6′-diethylphenylamido)]propanoates,” Turkish Journal of Chemistry, vol. 32, no. 3, pp. 333–353, 2008.
[40]
M. Ashfaq, M. I. Khan, M. K. Baloch, and A. Malik, “Biologically potent organotin(IV) complexes of 2-maleimidoacetic acid,” Journal of Organometallic Chemistry, vol. 689, no. 1, pp. 238–245, 2004.