全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Syntheses, Spectral Characterization, and Antimicrobial Studies on the Coordination Compounds of Metal Ions with Schiff Base Containing Both Aliphatic and Aromatic Hydrazide Moieties

DOI: 10.1155/2013/981764

Full-Text   Cite this paper   Add to My Lib

Abstract:

An EtOH solution of 3-ketobutanehydrazide and salicylhydrazide on refluxing in equimolar ratio forms the corresponding Schiff base, LH3 (1). The latter reacts with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Zr(OH)2(IV), MoO2(VI), and UO2(VI) ions in equimolar ratio and forms the corresponding coordination compounds, [M(LH)(MeOH)3] (2, M = Mn, Co, Ni), [Cu(LH)]2 (3), [M′(LH)(MeOH)] (4, M′ = Zn, Cd), [Zr(OH)2(LH)(MeOH)2] (5), [MoO2(LH)(MeOH)] (6), and [UO2(LH)(MeOH)] (7). The coordination compounds have been characterized on the basis of elemental analyses, molar conductance, spectral (IR, reflectance, 1H NMR, ESR) studies, and magnetic susceptibility measurements. They are nonelectrolytes in DMSO. The coordination compounds, except 3, are monomers in diphenyl. They are active against gram-positive bacteria (S. aureus, B. subtilis), gram-negative bacteria (E. coli, P. aeruginosa), and yeast (S. cerevisiae, C. albicans). 1 acts as a dibasic tridentate ONO donor ligand in 2–7 coordinating through its both enolic O and azomethine N atoms. The coordination compounds 2 and 3 are paramagnetic, while rest of the compounds are diamagnetic. A square-planar structure to 3, a tetrahedral structure to 4, an octahedral structure to 2, 6, and 7, and a pentagonal bipyramidal structure to 5 are proposed. 1. Introduction Aroyl hydrazones and their coordination compounds are known to possess the biological activities and inhibit many enzymatic reactions in the cell. Owing to their biological activities such as antifungal, antibacterial, antimycobacterial, antitumor, anti-inflammatory, anti-HIV, leishmanicidal, trypanocidal, inhibitor of anthrax lethal factor, antidiabetic, antimalarial, and antipyretic, there has been an increasing interest towards the studies of the coordination compounds of the Schiff bases containing the hydrazone moiety during the past few decades [1–12]. The coordination compounds containing hydrazone moiety have been reported to act as analytical reagents, such as polymer coatings, fluorescent materials [13, 14], enzymes inhibitors, antifungal/antibacterial agents [15, 16], and corrosion inhibitors [17]. A perusal of the literature reveals that much work has been carried out towards the coordination compounds of Schiff bases containing salicylhydrazide moiety [18–27]; however, no work seems to be reported on the coordination compounds of Schiff base derived from 3-ketobutanehydrazide and salicylhydrazide. Novel noncytotoxic salicylhydrazide-containing 1N inhibitors have been developed through substructure database search methods [28]. The

References

[1]  S. Shah, R. Vyas, and R. H. Mehta, “Synthesis, characterization and antibacterial activities of some new Schiff base compounds,” Journal of Indian Chemical Society, vol. 69, no. 9, pp. 590–596, 1992.
[2]  S. N. Pandeya, D. Sriram, G. Nath, and E. D. Clercq, “Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4′-chlorophenyl)thiazol-2-yl] thiosemicarbazide,” European Journal of Pharmaceutical Sciences, vol. 9, no. 1, pp. 25–31, 1999.
[3]  P. G. More, R. B. Bhavankar, and S. C. Patter, “Synthesis and biological activity of Schiff bases of aminothiazoles,” Journal of Indian Chemical Society, vol. 78, no. 9, pp. 474–475, 2001.
[4]  A. C. L. Leite, R. S. de Lima, D. R. Moreira et al., “Synthesis, docking and in vitro activity of thiosemicarbazones, aminoacyl-thiosemicarbazides and acyl-thiazolidones against Trypanosoma cruzi,” Bioorganic Medicinal Chemistry, vol. 14, no. 11, pp. 3749–3757, 2006.
[5]  T. L. Smalley, A. J. Peat, J. A. Boucheron et al., “Synthesis and evaluation of novel heterocyclic inhibitors of GSK-3,” Bioorganic Medicinal Chemistry Letters, vol. 16, no. 8, pp. 2091–2094, 2006.
[6]  S. Gemma, G. Kukreja, C. Fattorusso et al., “Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains,” Bioorganic Medicinal Chemistry Letters, vol. 16, pp. 5384–5388, 2006.
[7]  A. Nayyar, V. Monga, A. Malde, E. Coutinho, and R. Jain, “Synthesis, anti-tuberculosis activity and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines,” Bioorganic Medicinal Chemistry, vol. 15, no. 2, pp. 626–640, 2007.
[8]  M. L. Hanna, T. M. Tarasow, and J. Perkins, “Mechanistic differences between in vitro assays for hydrazone-based small molecule inhibitors of anthrax lethal factor,” Bioorganic Medicinal Chemistry, vol. 35, no. 1, pp. 50–58, 2007.
[9]  G. Visbal, E. Marchan, A. Maldonado, Z. Simoni, and M. Navarro, “Synthesis and characterization of platinum-sterol hydrazone complexes with biological activity against Leishmania (L.) Mexicana,” Journal of Inorganic Biochemistry, vol. 102, no. 3, pp. 547–554, 2008.
[10]  P. Kumar, B. Narasimhan, D. Sharma, V. Judge, and R. Narang, “Hansch analysis of substituted benzoic acid benzylidene/furan-2-yl-methylene hydrazides as antimicrobial agents,” European Journal of Medicinal Chemistry, vol. 44, pp. 1853–1863, 2009.
[11]  D. Kumar, V. Judge, R. Narang et al., “Benzylidene/2-chlorobenzylidene hydrazides: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation,” European Journal of Medicinal Chemistry, vol. 45, pp. 2806–2816, 2010.
[12]  G. A. R. Yaul, V. V. Dhande, S. G. Bhadange, and A. S. Aswar, “Synthesis, structural studies and biological activity of dioxomolybdenum(VI), dioxotungsten(VI), thorium(IV) and dioxouranium(VI) complexes with 2-hydroxy-5-methyl and 2-hydroxy-5-chloroacetophenone benzoylhydrazone,” Russian Journal of Inorganic Chemistry, vol. 56, no. 4, pp. 549–554, 2011.
[13]  D. F. Martin, G. A. Janusonis, and B. B. Martin, “Stabilities of bivalent metal complexes of some β-ketoimines,” Journal of American Chemical Society, vol. 83, no. 1, pp. 73–75, 1961.
[14]  R. M. E. Bahnasawy, A. S. E. Tabl, E. E. Shereafy, T. I. Kashar, and Y. M. Issa, “Mononuclear and binuclear copper(II) complexes of phenylhydrazoacetylacetone isonicotinoylhydrazone,” Polish Joural of Chemistry, vol. 73, no. 12, pp. 1925–1936, 1999.
[15]  A. Campos, J. R. Anacona, and M. M. C. Vallette, “Synthesis and IR study of a zinc(II) complex containing a tetradentate macrocyclic Schiff base ligand: antifungal properties,” Main Group Metal Chemistry, vol. 22, no. 5, pp. 283–288, 1999.
[16]  M. Verma, S. N. Pandeya, K. N. Singh, and J. P. Stables, “Anticonvulsant activity of Schiff bases of isatin derivatives,” Acta Pharmaceutica, vol. 54, no. 1, pp. 49–56, 2004.
[17]  A. S. Fouda, G. E. Badr, and M. N. El-Haddad, “The inhibition of C-steel corrosion in H3PO4 solution by some furfural hydrazone derivatives,” Journal of the Korean Chemical Society, vol. 52, no. 2, pp. 124–132, 2008.
[18]  K. K. Narang and A. Aggarwal, “Salicylaldehyde salicylhydrazone complexes of some transition metal ions,” Inorganica Chimica Acta, vol. 9, no. L2, pp. 137–142, 1974.
[19]  A. Syamal and D. Kumar, “Molybdenum complexes of bioinorganic interest: new dioxomolybdenum(VI) complexes of Schiff bases derived from salicylaldehydes and salicylhydrazide,” Transition Metal Chemistry, vol. 7, no. 3, pp. 118–121, 1982.
[20]  A. Syamal and D. Kumar, “Spectral studies on new dioxouranium(VI) complexes of tridentate Schiff bases derived from salicylhydrazide & salicylaldehyde or substituted salicylaldehydes,” Indian Journal of Pure and Applied Physics, vol. 21, pp. 87–91, 1983.
[21]  R. S. Baligar and V. K. Revankar, “Coordination diversity of new mononucleating hydrazone in 3d metal complexes: synthesis, characterization and structural studies,” Journal of Serbian Chemical Society, vol. 71, no. 12, pp. 1301–1310, 2006.
[22]  Q. X. Yang, L. Z. Gang, L. W. Sheng, and Z. H. Liang, “Synthesis, crystal structure and cytotoxic activity of a novel nickel(II) complex with Schiff base derived from salicylhydrazide,” Chinese Journal of Structural Chemistry, vol. 27, pp. 707–711, 2008.
[23]  D. A. Chowdhury, M. N. Uddin, and M. A. H. Sarker, “Synthesis and characterization of dioxouranium(VI) complexes of some aroylhydrazines and their Schiff bases with acetone,” Chiang Mai Journal of Science, vol. 35, pp. 483–494, 2008.
[24]  W. Luo, X. T. Wang, X. G. Meng, G. Z. Cheng, and Z. P. Ji, “Metal coordination architectures of N-acyl-salicylhydrazides: the effect of metal ions and steric repulsion of ligands to their structures of polynuclear metal complexes,” Polyhedron, vol. 28, pp. 300–306, 2009.
[25]  D. Kumar, P. K. Gupta, A. Kumar, D. Dass, and A. Syamal, “Syntheses, spectroscopic and magnetic properties of polystyrene-anchored coordination compounds of tridentate ONO donor Schiff base,” Journal of Coordination Chemistry, vol. 64, no. 4, pp. 590–599, 2011.
[26]  V. A. Shelke, S. M. Jadhav, S. G. Shankarwar, A. S. Munde, and T. K. Chondhekar, “Synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of N-benzylidene-2-hydroxybenzohydrazide,” Bulletin Chemical Society of Ethiopa, vol. 25, no. 3, pp. 381–391, 2011.
[27]  T. I. A. Gerber, N. C. Yumata, and R. Betz, “The reaction of salicylhydrazide with [ReOX3(PPh3)2]. Influence of X on product formation,” Inorganic Chemistry Communications, vol. 15, pp. 69–72, 2012.
[28]  L. Q. Al-Mawsawi, R. Dayam, L. Taheri, M. Witvrouw, Z. Debyser, and N. Neamati, “Discovery of novel non-cytotoxic salicylhydrazide containing HIV-1 integrase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 23, pp. 6472–6475, 2007.
[29]  N. Neamati, H. Hong, J. M. Owen et al., “Salicylhydrazine-containing inhibitors of HIV-1 integrase: implication for a selective chelation in the integrase active site,” Journal of Medicinal Chemistry, vol. 41, no. 17, pp. 3202–3209, 1998.
[30]  G. J. J. Chen, J. W. McDonald, and W. E. Newton, “Synthesis of Mo(IV) and Mo(V) complexes using oxo abstraction by phosphines. Mechanistic implications,” Inorganic Chemistry, vol. 15, no. 11, pp. 2612–2615, 1976.
[31]  D. Kumar, V. Pandey, and A. Gupta, “Studies on the coordination compounds of thiazolidin-4-one derived from salicylaldehyde-o-hydroxyphenylurea,” International Journal of Chemical Sciences, vol. 9, no. 3, pp. 1307–1318, 2011.
[32]  D. Kumar, A. Syamal, A. Gupta, V. Pandey, and M. Rani, “Coordination compounds of Schiff base containing urea moiety,” Journal of Indian Chemical Society, vol. 89, no. 6, pp. 745–752, 2012.
[33]  I. Ahmad and A. Z. Beg, “Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens,” Journal of Ethnopharmacology, vol. 74, no. 2, pp. 113–123, 2001.
[34]  J. M. Andrews, “Determination of minimum inhibitory concentrations,” Journal of Antimicrobial Chemotherapy, vol. 48, no. 1, pp. 5–16, 2001.
[35]  O. H. S. A. Obaidi, “Synthesis, characterization and theoretical treatment of sandwich Schiff bases complexes derived from salicylaldehyde with some transition metals and study of its biological activity,” International Journal of Chemistry Research, vol. 3, no. 2, pp. 1–5, 2012.
[36]  K. R. Aneja, C. Sharma, and R. Joshi, “In vitro efficacy of amaltas (Cassia fistula L.) against the pathogens causing otitis externa,” Jundishapur Journal of Microbiology, vol. 4, no. 3, pp. 175–183, 2011.
[37]  A. Syamal and D. Kumar, “New oxozirconium(IV) complexes with the Schiff bases derived from salicylaldehyde, substituted salicylaldehydes and salicylhydrazide,” Polish Journal of Chemistry, vol. 55, pp. 1747–1750, 1981.
[38]  A. P. Mishra, H. Purwar, and R. K. Jain, “Microwave synthesis, spectral, thermal and antimicrobial activities of Co(II), Ni(II) and Cu(II) metal complexes with Schiff base ligand,” Biointerface Research in Applied Chemistry, vol. 2, no. 2, pp. 291–299, 2012.
[39]  A. Syamal and K. S. Kale, “Magnetic properties of oxovanadium(IV) complexes of some β-diketones,” Indian Journal of Chemistry, vol. 17A, pp. 518–520, 1979.
[40]  J. R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, NY, USA, 1971.
[41]  D. Kumar, A. Syamal, A. Gupta, M. Rani, and P. K. Gupta, “Role of pH on the formation of the coordination compounds with the Schiff base derived from 3-formylsalicylic acid and 4-amino-2,3-dimethyl-1-phenyl-3- pyrazolin-5-one,” Journal of the Indian Chemical Society, vol. 87, no. 10, pp. 1185–1197, 2010.
[42]  A. S. Fouda, G. E. Badr, and M. N. El-Haddad, “The inhibition of C-steel corrosion in H3PO4 solution by some furfural hydrazone derivatives,” Journal of the Korean Chemical Society, vol. 52, no. 2, pp. 124–132, 2008.
[43]  A. Syamal and M. R. Maurya, “Coordination chemistry of Schiff base complexes of molybdenum,” Coordination Chemistry Reviews, vol. 95, pp. 183–238, 1989.
[44]  N. P. Johnson, C. J. L. Lock, and G. Wilkinson, “Amine, phosphine, arsine, and stibine complexes of rhenium-(III), -(IV), and -(V),” Journal of the Chemical Society, pp. 1054–1066, 1964.
[45]  A. Syamal, “Calculation of electronic spectral parameters(Dq, β, β°, λ) and covalence for octahedral nickel (II), octahedral cobalt (II) and tetrahedral cobalt (II) complexes,” Chemistry Education, vol. 4, pp. 33–36, 1987.
[46]  D. Kumar, A. Syamal, Jaipal, and P. K. Gupta, “Coordination compounds of polystyrene-supported azo dye,” Journal of the Indian Chemical Society, vol. 84, no. 3, pp. 217–222, 2007.
[47]  R. M. Silverstein and G. C. Bassler, Spectrometric Identification of Organic Compounds, Wiley Interscience, New York, NY, USA, 2nd edition, 1967.
[48]  O. I. Singh, M. Damayanti, N. R. Singh, R. K. H. Singh, M. Mohapatra, and R. M. Kadam, “Synthesis, EPR and biological activities of bis(1-N-butylamidino-O-alkylurea)copper(II)chloride complexes: EPR evidence for binuclear complexes in frozen DMF solution,” Polyhedron, vol. 24, no. 8, pp. 909–916, 2005.
[49]  H. A. E. Boraey, R. M. A. Rahman, E. M. Atia, and K. H. Hilmy, “Spectroscopic, thermal and toxicity studies of some 2-amino-3-cyano-1, 5-diphenylpyrrole containing Schiff bases copper(II) complexes,” Central European Journal of Chemistry, vol. 8, no. 4, pp. 820–833, 2010.
[50]  K. Singh, Y. Kumar, P. Puri, M. Kumar, and C. Sharma, “Cobalt, nickel, copper and zinc complexes with 1, 3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies,” European Journal of Medicinal Chemistry, vol. 52, pp. 313–321, 2012.
[51]  K. Singh, Y. Kumar, P. Puri, and G. Singh, “Spectroscopic, thermal and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from bidentate ligands containing N and S donor atoms,” Bioinorganic Chemistry and Applications, vol. 2012, Article ID 729708, 9 pages, 2012.
[52]  S. A. Patil, S. N. Unki, A. D. Kulkarni, V. H. Naik, and P. S. Badami, “Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies,” Spectrochimica Acta A, vol. 79, no. 5, pp. 1128–1136, 2011.
[53]  N. Raman, A. Kulandaisamy, and K. Jeyasubramanian, “Synthesis, structural characterization, redox and antimicrobial studies of Schiff base copper(II), nickel(II), cobalt(II), manganese(II), zinc(II) and oxovanadium(II) complexes derived from benzil and 2-aminobenzyl alcohol,” Polish Journal of Chemistry, vol. 76, no. 8, pp. 1085–1094, 2002.
[54]  N. Dharmaraj, P. Viswanathamurthi, and K. Natarajan, “Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity,” Transition Metal Chemistry, vol. 26, no. 1-2, pp. 105–109, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133