A series of parasubstituted tetraphenylporphyrin zirconium(IV) salicylate complexes (SA/5-SSAZr(IV)RTPP, R = p-H, p-CH3, p-NO2, p-Cl, SA = salicylate, and 5-SSA = 5-sulfosalicylate) have been synthesized, and the spectral properties of free base porphyrins, their corresponding metallated, and axially ligated zirconium(IV) porphyrin compounds were compared with each other. A detailed analysis of ultraviolet-visible (UV-vis), proton nulcear magnetic resonance (1H NMR) spectroscopy, infrared (IR) spectroscopy, and elemental analysis suggested the transformation from free base porphyrins to zirconium(IV) porphyrins. The ability of the metal in this complex for extra coordination of solvent molecules was confirmed by ESI-MS spectra. Besides the fluorescence, cyclic voltammetry, and thermogravimetric studies, the complexes were also screened for antimicrobial and anticancer activities. Among all the complexes, 5-SSAZr(p-NO2TPP) shows high antibacterial activity. 1. Introduction Synthesis and functionalization of porphyrins [1] have long been of great interest in the chemistry community because of the vast potentials and demands for porphyrin derivatives in diverse fields, such as materials [2, 3], supramolecular chemistry [4, 5], biomimetic models [6], catalysis [7, 8], photodynamic therapy [9], and ionophores [10]. Porphyrins were reported to exhibit a variety of biological activities. This is due to the fact that natural and synthetic porphyrins have relatively low toxicity in vitro and in vivo and they possess antitumor [11, 12] and antioxidant effects [13, 14] and have a good potential for metal ions complexation. The ability for numerous chemical modifications and the large number of different mechanisms by which porphyrins affect microbial and viral pathogens place porphyrins into a group of compounds with an outstanding potential for discovery of novel agents, procedures, and materials active against pathogenic microorganisms [15]. Metalloporphyrins are the basis of new antifungal, antiparasitic, and anticancer drugs because modification of the porphyrin periphery confers qualitatively a new spectrum of activities to metalloporphyrins [16, 17]. It has been reported that metal complexation alters the various physiological properties, especially the cytotoxic and antitumor activities, of many naturally occurring compounds. Zirconium(IV) porphyrins have gained attention from global researchers due to the peculiar characteristics of this class of compounds. To the best of our knowledge, the chemistry of zirconium(IV) porphyrinates remains underdeveloped,
References
[1]
Z. Xue, P. P. S. Lee, Y. Wang et al., “Further insight into aryl nitration of tetraphenylporphyrin,” Tetrahedron, vol. 67, no. 33, pp. 6030–6035, 2011.
[2]
Y. Xu, Z. Liu, X. Zhang et al., “A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property,” Advanced Materials, vol. 21, no. 12, pp. 1275–1279, 2009.
[3]
C. D. Natale, D. Monti, and R. Paolesse, “Chemical sensitivity of porphyrin assemblies,” Materials Today, vol. 13, no. 7-8, pp. 46–52, 2010.
[4]
M. Wathier and M. W. Grinstaff, “Synthesis and properties of supramolecular ionic networks,” Journal of the American Chemical Society, vol. 130, no. 30, pp. 9648–9649, 2008.
[5]
C. M. Drain, A. Varotto, and I. Radivojevic, “Self-organized porphyrinic materials,” Chemical Reviews, vol. 109, no. 5, pp. 1630–1658, 2009.
[6]
M. Endo, M. Fujitsuka, and T. Majima, “Diastereochemically controlled porphyrin dimer formation on a DNA duplex scaffold,” Journal of Organic Chemistry, vol. 73, no. 3, pp. 1106–1112, 2008.
[7]
B. Meunier, “Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage,” Chemical Reviews, vol. 92, no. 6, pp. 1411–1456, 1992.
[8]
B. Gao, Y. Chen, and Q. Lei, “Hydroxylation of cyclohexane with molecular oxygen catalyzed by highly efficient heterogeneous Mn(III) porphyrin catalysts prepared by special synthesis and immobilization method,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 74, no. 1–4, pp. 455–465, 2012.
[9]
A. E. O'Connor, W. M. Gallagher, and A. T. Byrne, “Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy,” Photochemistry and Photobiology, vol. 85, no. 5, pp. 1053–1074, 2009.
[10]
D. Vlascici, E. F. Cosma, E. M. Pica et al., “Free base porphyrins as ionophores for heavy metal sensors,” Sensors, vol. 8, no. 8, pp. 4995–5004, 2008.
[11]
Y. Ni, “Metalloporphyrins and functional analogues as MRI contrast agents,” Current Medical Imaging Reviews, vol. 4, no. 2, pp. 96–112, 2008.
[12]
A. A. Fadda, R. E. El-Mekawy, A. El-Shafei, H. S. Freeman, D. Hinks, and M. El-Fedawy, “Design, synthesis, and pharmacological screening of novel porphyrin derivatives,” Journal of Chemistry, vol. 2013, Article ID 340230, 11 pages, 2013.
[13]
N. A. Antonova, V. P. Osipova, M. N. Kolyada, N. O. Movchan, E. R. Milaeva, and Y. T. Pimenov, “Study of the antioxidant properties of porphyrins and their complexes with metals,” Macroheterocycles, vol. 3, no. 2-3, pp. 139–144, 2010.
[14]
M. Yuasa, K. Oyaizu, H. Murata, Y. Sahara, T. Hatsugai, and A. Ogata, “Antioxidant and anticancer properties of metalloporphyrins embedded in liposomes,” Journal of Oleo Science, vol. 56, no. 2, pp. 87–93, 2007.
[15]
I. Stojiljkovic, B. D. Evavold, and V. Kumar, “Antimicrobial properties of porphyrins,” Expert Opinion on Investigational Drugs, vol. 10, no. 2, pp. 309–320, 2001.
[16]
K. Rajesh, A. K. Rahiman, K. S. Bharathi, S. Sreedaran, V. Gangadevi, and V. Narayanan, “Spectroscopic, redox and biological studies of push-pull porphyrins and their metal complees,” Bulletin of the Korean Chemical Society, vol. 31, no. 9, pp. 2656–2664, 2010.
[17]
J. Bozja, J. Sherrill, S. Michielsen, and I. Stojiljkovic, “Porphyrin-based, light-activated antimicrobial materials,” Journal of Polymer Science A, vol. 41, no. 15, pp. 2297–2303, 2003.
[18]
A. Falber, B. P. Burton-Pye, I. Radivojevic et al., “Ternary porphyrinato HfIV and ZrIV polyoxometalate complexes,” European Journal of Inorganic Chemistry, vol. 2009, no. 17, pp. 2459–2466, 2009.
[19]
I. N. Tretyakova, V. Y. Chernii, L. A. Tomachynski, and S. V. Volkov, “Synthesis and luminescent properties of new zirconium(IV) and hafnium(IV) phthalocyanines with various carbonic acids as out-planed ligands,” Dyes and Pigments, vol. 75, no. 1, pp. 67–72, 2007.
[20]
L. A. Tomachynski, V. Y. Chernii, H. N. Gorbenko, V. V. Filonenko, and S. V. Volkov, “Synthesis, spectral properties, and antitumor activity of a new axially substituted phthalocyanine complex of zirconium(IV) with citric acid,” Chemistry & Biodiversity, vol. 1, no. 6, pp. 862–867, 2004.
[21]
V. Kovalska, M. Losytskyy, V. Chernii et al., “Studies of anti-fibrillogenic activity of phthalocyanines of zirconium containing out-of-plane ligands,” Bioorganic and Medicinal Chemistry, vol. 20, no. 1, pp. 330–334, 2012.
[22]
Y. S. Gerasymchuk, V. Y. Chernii, L. A. Tomachynskii, M. Kowalska, J. Legendziewicz, and S. Radzki, “Correlation between computer models of structure of 5-sulfosalicylato Zr(IV) phthalocyanine with results obtained by NMR, ESI-MS and UV-Vis spectra,” Optical Materials, vol. 32, no. 9, pp. 1193–1201, 2010.
[23]
F. Oke, B. Aslim, S. Ozturk, and S. Altundag, “Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten,” Food Chemistry, vol. 112, no. 4, pp. 874–879, 2009.
[24]
A. Thiantanawat, B. J. Long, and A. M. Brodie, “Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens,” Cancer Research, vol. 63, no. 22, pp. 8037–8050, 2003.
[25]
X. Tong, S. Lin, M. Fujii, and D. Hou, “Echinocystic acid induces apoptosis in HL-60 cells through mitochondria-mediated death pathway,” Cancer Letters, vol. 212, no. 1, pp. 21–32, 2004.
[26]
A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, and L. Korsakoff, “A simplified synthesis for meso-tetraphenylporphin,” Journal of Organic Chemistry, vol. 32, no. 2, p. 476, 1967.
[27]
E. V. Motorina and T. N. Lomova, “Formation of supramolecular complex between imidazole and dichloro(5,10,15,20-tetraphenylporphinato)zirconium(IV),” Russian Journal of General Chemistry, vol. 80, no. 4, pp. 842–848, 2010.
[28]
Y. Lu, J. Tung, J. Chen et al., “Salicylate exchange in meso-tetraphenylporphyrinato salicylato thallium (III), Tl (tpp) (2-OH-C6H4CO2) and 13C NMR investigation of its homolog thiocyanato (meso-tetra-p-tolyl-porphyrinato)thallium (III), Tl (tptp) (SCN),” Polyhedron, vol. 18, no. 1-2, pp. 145–150, 1999.
[29]
E. Fagadar-Cosma, D. Vlascici, and G. Fagadar-Cosma, “Monomer and sandwich type dimmer complexes of Zr (IV) with meso-tetraphenylporphyrin. Synthesis and comparative IR, UV-vis and HPLC behavior,” in Proceedings of the 12th Symposium on Analytical and Environmental Problems, Szeged, pp. 25–29, Szeged, Hungary, September 2005.
[30]
Z. Sun, Y. She, Y. Zhou, X. Song, and K. Li, “Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes,” Molecules, vol. 16, no. 4, pp. 2960–2970, 2011.
[31]
D. Vlascici, O. Bizerea-Spiridon, and E. Fagadar-Cosma, “Metalloporphyrin based fluoride-selective Electrode,” in Proceedings of the 13th Symposium on Analytical and Environmental Problems, pp. 92–95, Szeged, Hungary, September 2006.
[32]
L. Jiang, L. Gao, and Y. Liu, “Adsorption of salicylic acid, 5-sulfosalicylic acid and Tiron at the alumina-water interface,” Colloids and Surfaces A, vol. 211, no. 2-3, pp. 165–172, 2002.
[33]
E. C. Yost, M. I. Tejedor-Tejedor, and M. A. Anderson, “In situ CIR-FTIR characterization of salicylate complexes at the Goethite/Aqueous solution interface,” Environmental Science and Technology, vol. 24, no. 6, pp. 822–828, 1990.
[34]
L. Yang, Y. Xu, Y. Su et al., “FT-IR spectroscopic study on the variations of molecular structures of some carboxyl acids induced by free electron laser,” Spectrochimica Acta A, vol. 62, no. 1–5, pp. 1209–1215, 2005.
[35]
G. Kn?r and A. Strasser, “Coexisting intraligand fluorescence and phosphorescence of hafnium(IV) and thorium(IV) porphyrin complexes in solution,” Inorganic Chemistry Communications, vol. 5, no. 11, pp. 993–995, 2002.
[36]
B. J. Pistorio and D. G. Nocera, “Photochemistry of group IV porphyrin halides,” Journal of Photochemistry and Photobiology A, vol. 162, no. 2-3, pp. 563–567, 2004.
[37]
I. N. Tret'yakova, V. Y. Chernii, L. A. Tomachinskaya, and S. V. Volkov, “Physicochemical properties of novel mixed-ligand complexes of zirconium and hafnium bis(4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-onato)phthalocyaninates,” Theoretical and Experimental Chemistry, vol. 42, no. 3, pp. 175–180, 2006.
[38]
L. A. Tomachinskaya, Y. Y. Kolotilova, V. Y. Chernii, and S. V. Volkov, “Electrochemical behavior of novel bis(β-diketonate)-phthalocyanine complexes of Zr(IV) and Hf(IV),” Theoretical and Experimental Chemistry, vol. 39, no. 2, pp. 104–108, 2003.