全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancement of Antibacterial Activity of Capped Silver Nanoparticles in Combination with Antibiotics, on Model Gram-Negative and Gram-Positive Bacteria

DOI: 10.1155/2013/871097

Full-Text   Cite this paper   Add to My Lib

Abstract:

The nanoparticles used in this study were prepared from AgNO3 using NaBH4 in the presence of capping agents such as citrate, sodium dodecyl sulfate, and polyvinylpyrrolidone. The formed nanoparticles were characterized with UV-Vis, TEM, and XRD. The generation of silver nanoparticles was confirmed from the appearance of yellow colour and an absorption maximum between 399 and 404?nm. The produced nanoparticles were found to be spherical in shape and polydisperse. For citrate, SDS, and PVP capped nanoparticles, the average particle sizes were , , and ?nm, respectively. The crystallinity of the nanoparticles in FCC structure is confirmed from the SAED and XRD patterns. Also, the combined antibacterial activity of these differently capped nanoparticles with selected antibiotics (streptomycin, ampicillin, and tetracycline) was evaluated on model Gram-negative and Gram-positive bacteria, employing disc diffusion assay. The activity of the tested antibiotics was enhanced in combination with all the stabilized nanoparticles, against both the Gram classes of bacteria. The combined effects of silver nanoparticles and antibiotics were more prominent with PVP capped nanoparticles as compared to citrate and SDS capped ones. The results of this study demonstrate potential therapeutic applications of silver nanoparticles in combination with antibiotics. 1. Introduction Since ancient times, silver has been known to possess antibacterial properties [1], but the solubility characteristics of silver metal and silver salts (e.g., silver nitrate) render it impractical in many clinical scenarios, that is, where silver nanoparticles (Ag NPs) have been a subject of great interest among researchers [2–4], because it is not only facile to synthesize silver nanoparticles of desired sizes [5, 6] and shapes [7–9] dispersed in aqueous/organic phases but also feasible to make films, with the composite of these particles suiting various applications in the field of medical diagnosis and therapy. The use of silver nanoparticles in materials modification for application in different fields such as clothing, semiconductor, and preparation of nanocomposite materials with improved performances has been demonstrated. For example, silver nanoparticles have been successfully coated on medical devices for infection-free transplantation [10, 11]. Silver nanoparticles have also been coated on various fabrics [12–15]; the coating of nanosilver imparts not only the metallic feature to the fibers rendering the textiles conductive but also the antibacterial property to the textiles. These studies

References

[1]  S. Silver and L. T. Phung, “Bacterial heavy metal resistance: new surprises,” Annual Review of Microbiology, vol. 50, no. 1, pp. 753–789, 1996.
[2]  M. Guzman, J. Dille, and S. Godet, “Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 8, no. 1, pp. 37–45, 2012.
[3]  V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009.
[4]  I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004.
[5]  G. A. Mart?nez-Castanon, N. Nino-Mart?nez, F. Mart?nez-Gutierrez, J. R. Martínez-Mendoza, and F. Ruiz, “Synthesis and antibacterial activity of silver nanoparticles with different sizes,” Journal of Nanoparticle Research, vol. 10, pp. 1343–1348, 2008.
[6]  X. Sun and Y. Luo, “Preparation and size control of silver nanoparticles by a thermal method,” Materials Letters, vol. 59, no. 29-30, pp. 3847–3850, 2005.
[7]  Z. Shervani, Y. Ikushima, M. Sato et al., “Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions,” Colloid and Polymer Science, vol. 286, no. 4, pp. 403–410, 2008.
[8]  B. Sadeghi, F. S. Garmaroudi, M. Hashemi et al., “Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates,” Advanced Powder Technology, vol. 23, no. 1, pp. 22–26, 2012.
[9]  S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 1712–1720, 2007.
[10]  F. Furno, K. S. Morley, B. Wong et al., “Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?” Journal of Antimicrobial Chemotherapy, vol. 54, no. 6, pp. 1019–1024, 2004.
[11]  K. N. J. Stevens, S. Croes, R. S. Boersma et al., “Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters,” Biomaterials, vol. 32, no. 5, pp. 1264–1269, 2011.
[12]  M. H. El-Rafie, T. I. Shaheen, A. A. Mohamed, and A. Hebeish, “Bio-synthesis and applications of silver nanoparticles onto cotton fabrics,” Carbohydrate Polymers, vol. 90, no. 2, pp. 915–920, 2012.
[13]  D. Hegemann, M. M. Hossain, and D. J. Balazs, “Nanostructured plasma coatings to obtain multifunctional textile surfaces,” Progress in Organic Coatings, vol. 58, no. 2-3, pp. 237–240, 2007.
[14]  M. L. W. Knetsch and L. H. Koole, “New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles,” Polymers, vol. 3, no. 1, pp. 340–366, 2011.
[15]  F. Zhang, X. Wu, Y. Chen, and H. Lin, “Application of silver nanoparticles to cotton fabric as an antibacterial textile finish,” Fibers and Polymers, vol. 10, no. 4, pp. 496–501, 2009.
[16]  G. D. Wright, “Resisting resistance: new chemical strategies for battling superbugs,” Chemistry and Biology, vol. 7, no. 6, pp. R127–R132, 2000.
[17]  G. D. Wright, “Bacterial resistance to antibiotics: enzymatic degradation and modification,” Advanced Drug Delivery Reviews, vol. 57, no. 10, pp. 1451–1470, 2005.
[18]  E. T. Hwang, J. H. Lee, Y. J. Chae et al., “Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria,” Small, vol. 4, no. 6, pp. 746–750, 2008.
[19]  W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, “Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli,” Applied and Environmental Microbiology, vol. 74, no. 7, pp. 2171–2178, 2008.
[20]  Z. Xiu, Q. Zhang, H. L. Puppala, V. L. Colvin, and P. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Letters, vol. 12, no. 8, pp. 4271–4275, 2012.
[21]  M. A. Dar, A. Ingle, and M. Rai, “Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 9, no. 1, pp. 105–110, 2013.
[22]  A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan, “Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 1, pp. e103–e109, 2010.
[23]  G. Geoprincy, P. Saravanan, N. N. Gandhi, and S. Renganathan, “A novel approach for studying the combined antimicrobial effects of silver nanoparticles and antibiotics through agar over layer method and disk diffusion method,” Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 4, pp. 1557–1565, 2011.
[24]  A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, and S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, no. 2, pp. 168–171, 2007.
[25]  L. S. Devi and S. R. Joshi, “Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya,” Mycobiology, vol. 40, no. 1, pp. 27–34, 2012.
[26]  J. S. Kim, E. Kuk, K. N. Yu et al., “Antimicrobial effects of silver nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, no. 1, pp. 95–101, 2007.
[27]  J. L. Watts, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard, Clinical and Laboratory Standards Institute, 3rd edition, 2008.
[28]  M. M. Chili and N. Revaprasadu, “Synthesis of anisotropic gold nanoparticles in a water-soluble polymer,” Materials Letters, vol. 62, no. 23, pp. 3896–3899, 2008.
[29]  T. Hasell, J. Yang, W. Wang, P. D. Brown, and S. M. Howdle, “A facile synthetic route to aqueous dispersions of silver nanoparticles,” Materials Letters, vol. 61, no. 27, pp. 4906–4910, 2007.
[30]  A. J. Kora, R. Manjusha, and J. Arunachalam, “Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization,” Materials Science and Engineering C, vol. 29, no. 7, pp. 2104–2109, 2009.
[31]  S. Inphonlek, N. Pimpha, and P. Sunintaboon, “Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property,” Colloids and Surfaces B, vol. 77, no. 2, pp. 219–226, 2010.
[32]  S. S. Birla, V. V. Tiwari, A. K. Gade, A. P. Ingle, A. P. Yadav, and M. K. Rai, “Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus,” Letters in Applied Microbiology, vol. 48, no. 2, pp. 173–179, 2009.
[33]  S. P. Dhas, A. Mukherjee, and N. Chandrasekaran, “Synergistic effect of biogenic silver nanocolloid in combination with antibiotics: a potent therapeutic agent,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 1, pp. 292–295, 2013.
[34]  A. Banu, V. Rathod, and E. Ranganath, “Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae,” Materials Research Bulletin, vol. 46, no. 9, pp. 1417–1423, 2011.
[35]  A. M. El Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat, “Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions,” Environmental Science and Technology, vol. 44, no. 4, pp. 1260–1266, 2010.
[36]  A. Hitchman, G. H. Sambrook Smith, Y. Ju-Nam, M. Sterling, and J. R. Lead, “The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles,” Chemosphere, vol. 90, no. 2, pp. 410–416, 2013.
[37]  R. K. Gangwar, V. A. Dhumale, D. Kumari, et al., “Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability,” Materials Science and Engineering: C, vol. 32, no. 8, pp. 2659–2663, 2012.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133