Pd(II) and Pt(II) complexes of trimethoprim and pyrimethamine were synthesized and characterized by elemental analysis, UV-Vis, FTIR, and NMR spectroscopy. The complexes are formulated as four coordinate square planar species containing two molecules of the drugs and two chloride or thiocyanate ions. The coordination of the metal ions to the pyrimidine nitrogen atom of the drugs was confirmed by spectroscopic analyses. The complexes were screened for their antibacterial activities against eight bacterial isolates. They showed varied activities with the active metal complexes showing more enhanced inhibition than either trimethoprim or pyrimethamine. The Pd(II) complexes of pyrimethamine showed unique inhibitory activities against P. aeruginosa and B. pumilus, and none of the other complexes or the drugs showed any activity against these bacteria isolates. The MIC and MBC determinations revealed that these Pd(II) complexes are the most active. Structure activity relationship showed that Pt(II) complexes containing chloride ions are more active, while for Pd(II) complexes containing thiocyanate ions showed more enhanced activity than those containing chloride ions. 1. Introduction The discovery of potent group of pyrimidines with pronounced antagonistic effect on folic acid in cultures of Lactobacilli [1] led to the development of pyrimethamine and trimethoprim. Pyrimethamine was developed through brilliant feet of organic synthesis guided by biochemical considerations [2]. Additional modifications led to the synthesis of trimethoprim that inhibits bacterial dihydrofolate reductase like other diaminopyrimidines and its consequence selection as antibacterial agent [3–5]. Trimethoprim is a broad-spectrum antimicrobial and also exhibits antiparasitic activities [6]. Due to intensive use and misuse, resistance has emerged against trimethoprim [7]. Development of antimicrobial drugs was hailed as one of the great medical success story of the twentieth century [8]. At present, resistance against antimicrobial agents have become public health problem worldwide [9–15]. In the search for novel drugs against drug resistant diseases, the use of metal complexes has received tremendous attention [16–24] and resulted in a variety of exciting and invaluable drugs such as cis-platin [24]. Research are being undertaken in fields such as cancer [25–27], diabetes [28–32], arthritis [33], magnetic resonance imaging [34], metal-mediated antibiotics, antibacterial, antiviral, antiparasitic and radiosensitizers [35–38]. In continuation of our efforts [39–44] to develop
References
[1]
E. A. Falco, L. G. Goodwin, G. H. Hitchings, I. M. Rollo, and P. B. Russel, “2,4-diaminopyrimidines- a new series of antimalarials,” British Journal of Pharmacology and Chemotherapy, vol. 6, no. 2, pp. 185–200, 1951.
[2]
B. Roth, E. A. Fmco, G. H. Hitchings, and S. R. M. Bushby, “5-Benzyl-2, 1-diaminopyrimidines as antibacterial agents. I. Synthesis and antibacterial activity in vitro,” Journal of Medicinal and Pharmaceutical Chemistry, vol. 5, no. 6, pp. 1103–1123, 1962.
[3]
G. H. Hitchings and S. L. Smith, “Dihydrofolate reductases as targets for inhibitors,” Advances in Enzyme Regulation, vol. 18, pp. 347–371, 1980.
[4]
E. A. Falco, L. G. Goodwin, G. A. Hitchings, I. M. Rollo, and P. B. Russel, “2:4-diaminopyrimidines- a new series of antimalarials,” British Journal of Pharmacology and Chemotherapy, vol. 6, no. 2, pp. 185–200, 1951.
[5]
G. H. Hitchings, “Species differences among dihydrofolate reductases as a basis for chemotherapy,” Postgraduate Medical Journal, vol. 45, pp. 7–10, 1969.
[6]
J. J. Burchall, J. W. Corcoran, and F. E. Hahn, Eds., Antibiotics, vol. 3, Springer, New York, NY, USA, 1975.
[7]
R. L. Then, “History and future of antimicrobial 2, 4-diaminopyrimidines,” Journal of Chemotherapy, vol. 5, pp. 361–368, 1993.
[8]
B. M. Cook, N. Mohandas, and R. L. Copel, “Malaria and the red blood cell membrane,” Seminars in Hematology, vol. 41, pp. 173–188, 2004.
[9]
D. T. W. Chu, J. J. Plattner, and L. Katz, “New directions in antibacterial research,” Journal of Medicinal Chemistry, vol. 39, no. 20, pp. 3853–3873, 1996.
[10]
J. Verhoef and A. Fluit, “Surveillance uncovers the smoking gun for resistance emergence,” Biochemical Pharmacology, vol. 71, no. 7, pp. 1036–1041, 2006.
[11]
M. Leeb, “Antibiotics: a short in the arm,” Nature, vol. 431, pp. 892–893, 2004.
[12]
P. A. Ajibade and N. H. Zulu, “Synthesis, characterization, and antibacterial activity of metal complexes of phenylthiourea: the X-ray single crystal structure of [Zn(SC(NH2)NHC6H5)2(OOCCH3)2] C2H5OH,” Journal of Coordination Chemistry, vol. 63, no. 18, pp. 3229–3239, 2010.
[13]
N. V. Loginova, T. V. Koval'chuk, R. A. Zheldakova et al., “Synthesis and biological evaluation of copper (II) complexes of sterically hindered o-aminophenol derivatives as antimicrobial agents,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 20, pp. 5403–5407, 2006.
[14]
World Health Organization, The World Health Report 2004-Changing History, Annex Table 2: Deaths By Cause, Sex and Mortality Stratum in WHO Regions, Estimates For 2002, WHO, Washington, DC, USA, 2004.
[15]
K. Namba, X. Zheng, K. Motoshima et al., “Design and synthesis of benzenesulfananilides active against methicillin resistant staphylococcus aureus and vancomycin-resistant enterococcus,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 11, pp. 6131–6144, 2008.
[16]
C. S. K. Rajapakse, A. Martinez, B. Naoulou et al., “Synthesis, characterization, and in vitro antimalarial and antitumor activity of new ruthenium(II) complexes of chloroquine,” Inorganic Chemistry, vol. 48, no. 3, pp. 1122–1131, 2009.
[17]
H. A. Wee, E. Daldini, C. Scolaro, R. Scopelliti, L. Juillerat-Jeannerat, and P. J. Dyson, “Development of organometallic ruthenium-arene anticancer drugs that resist hydrolysis,” Inorganic Chemistry, vol. 45, no. 22, pp. 9006–9013, 2006.
[18]
C. S. Allardyce, A. Dorcier, C. Scolaro, and P. J. Dyson, “Development of organometallic (organo-transition metal) pharmaceuticals,” Applied Organometallic Chemistry, vol. 19, no. 1, pp. 1–10, 2005.
[19]
M. S. Refat and S. A. El-Shazly, “Identification of a new anti-diabetic agent by combining VOSO4 and vitamin E in a single molecule: studies on its spectral, thermal and pharmacological properties,” European Journal of Medicinal Chemistry, vol. 45, no. 7, pp. 3070–3079, 2010.
[20]
B. H. M. Hussein, A. A. Hassan, F. E. A. Mona, and E. F. Abdullah I, “A novel anti-tumor agent, Ln(III) 2-thioacetate benzothiazole induces anti-angiogenic effect and cell death in cancer cell lines,” European Journal of Medicinal Chemistry, vol. 51, pp. 99–109, 2012.
[21]
K. H. Thompson, J. Chiles, V. G. Yuen, J. Tse, J. H. McNeill, and C. Orvig, “Comparison of anti-hyperglycemic effect amongst vanadium, molybdenum and other metal maltol complexes,” Journal of Inorganic Biochemistry, vol. 98, no. 5, pp. 683–690, 2004.
[22]
S. M. Brichard and J.-C. Henquin, “The role of vanadium in the management of diabetes,” Trends in Pharmacological Sciences, vol. 16, no. 8, pp. 265–270, 1995.
[23]
B. S. Sekhon and L. Gandhi, “Medicinal uses of inorganic compounds-1,” Resonanceno, vol. 11, no. 4, pp. 75–89, 2006.
[24]
D. Lebwohl and R. Canetta, “Clinical development of platinum complexes in cancer therapy: an historical perspective and an update,” European Journal of Cancer, vol. 34, no. 10, pp. 1522–1534, 1998.
[25]
C. G. Hartinger, M. A. Jakupec, S. Zorbas-Seifried et al., “KP1019, a new redox-active anticancer agent-preclinical development and results of a clinical phase I study in tumor patients,” Chemistry and Biodiversity, vol. 5, no. 10, pp. 2140–2155, 2008.
[26]
G. Sava, A. Bergamoa, and P. J. Dyson, “Metal-based antitumour drugs in the post-genomic era: what comes next?” Dalton Transactions, vol. 40, pp. 9069–9075, 2011.
[27]
R. W. Y. Sun, D. L. Ma, E. L. M. Wong, and C. M. Che, “Some uses of transition metal complexes as anti-cancer and anti-HIV agents,” Dalton Transactions, vol. 10, pp. 4884–4892, 2007.
[28]
H. Sakurai, Y. Kojima, Y. Yoshikawa, K. Kawabe, and H. Yasui, “Antidiabetic vanadium(IV) and zinc(II) complexes,” Coordination Chemistry Reviews, vol. 226, no. 1-2, pp. 187–198, 2002.
[29]
T. Kiss, T. Jakusch, D. Hollender et al., “Biospeciation of antidiabetic VO, (IV) complexes,” Coordination Chemistry Review, vol. 252, no. 10-11, pp. 1153–1162, 2008.
[30]
N. Sekar, J. Li, and Y. Shechter, “Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research,” Critical Reviews in Biochemistry and Molecular Biology, vol. 31, no. 5, pp. 339–359, 1996.
[31]
K. H. Thompson and C. Orvig, “Vanadium in diabetes: 100 years from Phase 0 to Phase I,” Journal of Inorganic Biochemistry, vol. 100, no. 12, pp. 1925–1935, 2006.
[32]
K. H. Thompson, J. H. McNeill, and C. Orvig, “Vanadium compounds as insulin mimics,” Chemical Reviews, vol. 99, no. 9, pp. 2561–2571, 1999.
[33]
L. Messori and G. Marcon, “Gold complexes in the treatment of rheumatoid arthritis,” Metal Ions Biological Systems, vol. 41, pp. 279–304, 2004.
[34]
P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, “Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications,” Chemical Reviews, vol. 99, no. 9, pp. 2293–2352, 1999.
[35]
A. Garoufis, S. K. Hadjikakou, and N. Hadjiliadis, “Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents,” Coordination Chemistry Reviews, vol. 253, no. 9-10, pp. 1384–1397, 2009.
[36]
C. Orvig and M. J. Abrams, “Medicinal inorganic chemistry,” Chemical Review, vol. 99, no. 9, pp. 2201–2842, 1999.
[37]
Z. Guo and P. J. Sadler, “Metals in medicine,” Angew Chemie International Edition, vol. 38, no. 11, pp. 1512–1531, 1999.
[38]
M. J. Abrams and B. A. Murrer, “Metal compounds in therapy and diagnosis,” Science, vol. 261, no. 5122, pp. 725–730, 1993.
[39]
P. A. Ajibade, G. A. Kolawole, and P. O'Brien, “Metal complexes of 4-amino-N-(2-pyrimidinyl)benzene sulfonamide: synthesis, characterization and antiprotozoal studies,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 37, no. 8, pp. 653–659, 2007.
[40]
P. A. Ajibade and G. A. Kolawole, “Synthesis, characterization, antiplasmodial and antitrypanosomal activity of some metal(III) complexes of sulfadiazine,” Bulletin of the Chemical Society of Ethiopia, vol. 22, no. 2, pp. 261–268, 2008.
[41]
P. A. Ajibade and G. A. Kolawole, “Synthesis, characterization and antiprotozoal studies of some metal complexes of antimalarial drugs,” Transition Metal Chemistry, vol. 33, no. 4, pp. 493–497, 2008.
[42]
P. A. Ajibade and G. A. Kolawole, “Synthesis, characterization and in vitro antiprotozoal studies of iron(III) complexes of some antimalarial drugs,” Journal of Coordination Chemistry, vol. 61, no. 21, pp. 3367–3374, 2008.
[43]
P. A. Ajibade, “Metal complexes in the management of parasitic diseases: in vitro antiprotozoal studies of metal complexes of some antimalarial drugs,” Current Science, vol. 95, no. 12, p. 1673, 2008.
[44]
P. A. Ajibade and G. A. Kolawole, “Cobalt(III) complexes of some antimalarial drugs: synthesis, characterization, and in vitro antiprotozoal studies,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 40, no. 4, pp. 273–278, 2010.
[45]
G. K. Anderson and M. Lehn, “Bis(benzonitrile)dichloro complexes of palladium and platinum,” Inorganic Synthesis, vol. 28, pp. 60–62, 1990.
[46]
N. Manav, A. K. Mishra, and N. K. Kaushik, “Triphenyl phosphine adducts of platinum(IV) and palladium(II) dithiocarbamates complexes: a spectral and in vitro study,” Spectrochimica Acta A, vol. 60, no. 13, pp. 3087–3092, 2004.
[47]
D. S. Grierson and A. J. Afolayan, “Antibacterial activity of some indigenous plants used for the treatment of wounds in the Eastern Cape, South Africa,” Journal of Ethnopharmacology, vol. 66, no. 1, pp. 103–106, 1999.
[48]
A. D. Russell and J. R. Furr, “The antibacterial activity of a new chloroxylenol preparation containing ethylenediamine tetraacetic acid,” Journal of Applied Bacteriology, vol. 43, no. 2, pp. 253–260, 1977.
[49]
M. B. Ibrahim, M. O. Owonubi, and J. A. Onaolapo, “Antimicrobial effects of extracts of leaf, stem, and root-bark of Anogiessus leicarpus on Staphylococcus aureus NCTC, 8190, Escherichia coli NCTC, 10418 and Proteus vulgaris NCTC, 4636,” Journal of Pharmaceutical Research and Development, vol. 2, pp. 20–26, 1997.
[50]
D. A. Akinpelu and D. O. Kolawole, “Phytochemistry and antimicrobial activity of leaf extractof Piliostigma thonningii (Schum),” Science Focus, vol. 7, pp. 64–70, 2004.
[51]
K. Nishizawa, M. Hirano, A. Kimura et al., “Evaluation of the antimicrobial activity of carbapenem and cephem antibiotics against Pseudomonas aeruginosa isolated from hospitalized patients,” Journal of Infection and Chemotherapy, vol. 4, no. 4, pp. 174–176, 1998.
[52]
E. E. Olorundare, T. S. Emudianughe, G. S. Khasar, S. A. Koteyi, and N. Irobi, “Antibacterial properties of leave extract of Cassia alata,” Biological Research, vol. 4, pp. 113–117, 1992.
[53]
S. A. Shaker, Y. Farina, S. Mahmmod, and M. Eskender, “Preparation and study of mixed ligand complexes of caffeine and cyanate with some metal ions,” Australian Journal of Basic and Applied Sciences, vol. 3, no. 4, pp. 3337–3340, 2009.
[54]
J. Liu, B. Zhang, B. Wu, K. Zhang, and S. Hu, “The direct electrochemical synthesis of Ti(II), Fe(II), Cd(II), Sn(II), and Pb(II) cwith N, N-bis(Salicylidene)-o-phenylenediamine,” Turkish Journal of Chemistry, vol. 31, pp. 623–629, 2007.
[55]
S. A. Shaker and Y. Farina, “Preparing and characterization of some mixed ligand Complexes of 1, 3, 7-Trimethylxanthin, γ-Picoline and thiocyanate with some metal ions,” American Journal of Scientific Research, vol. 5, pp. 20–26, 2009.
[56]
A. J. Charlson, N. T. McArdle, and E. C. Watton, “The induction of filamentous growth in Escherichia Coli by a palladium(II) complex of L-serine,” Inorganica Chimica Acta C, vol. 56, pp. L35–L36, 1981.
[57]
G. J. Grant, A. M. Goforth, D. G. van Derver, and W. T. Pennigton, “Homoleptic platinum(II) and palladium(II) complexes of 1,5,9-trithiacyclododecane: the crystal structures of [Pt(12S3)2](PF6)2· 2CH3NO2 and [Pd(12S3)2](BF4)2· 0.5H2O,” Inorganic Chimica Acta, vol. 357, no. 7, pp. 2107–2114, 2004.
[58]
T. F. Koetzle and G. J. B. Williams, “The crystal and molecular structure of the antifolate drug trimethoprim (2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine). A neutron diffraction study,” Journal of American Chemical Society, vol. 98, no. 8, pp. 2074–2078, 1976.
[59]
J. J. Bergh, J. C. Breytenbach, and P. L. Wessels, “Degradation of trimethoprim,” Journal of Pharmaceutical Sciences, vol. 78, no. 4, pp. 348–350, 1989.
[60]
M. V. G. de Araújo, E. K. B. Vieira, G. S. Lázaro et al., “Inclusion complexes of pyrimethamine in 2-hydroxypropyl-β-cyclodextrin: characterization, phase solubility and molecular modelling,” Bioorganic and Medicinal Chemistry, vol. 15, no. 17, pp. 5752–5759, 2007.
[61]
B. Simo, L. Porello, R. Ortiz, A. Castineiras, J. Latorre, and E. Canton, “Interactions of metal ions with a 2, 4-diaminopyrimidine derivative (trimethoprim): antimicrobial studies,” Journal of Inorganic Biochemistry, vol. 81, no. 4, pp. 275–283, 2000.
[62]
M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, S. I. Gorelsky, A. B. P. Lever, and M. Gr?tzel, “Synthesis, spectroscopic and a ZINDO study of cis- and trans-(X2)bis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) complexes (X = Cl-, H2O, NCS-),” Coordination Chemistry Reviews, vol. 208, no. 1, pp. 213–225, 2000.
[63]
X. Li, J. Gui, H. Yang, W. Wu, F. Li, and H. C. Huang, “A new carbozole-based phenanthrenyl ruthenium complex as sensitizer for a dye-sensitized solar cell,” Inorganic Chimica Acta, vol. 361, no. 9-10, pp. 2835–2840, 2008.
[64]
J. L. Rios, M. C. Recio, and A. Villar, “Screening methods for natural products with antimicrobial activity: a review of the literature,” Journal of Ethnopharmacology, vol. 23, no. 2-3, pp. 127–149, 1988.