全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production of Pectinolytic Enzymes by the Yeast Wickerhanomyces anomalus Isolated from Citrus Fruits Peels

DOI: 10.1155/2013/435154

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wickerhamomyces anomalus is pectinolytic yeast isolated from citrus fruits peels in the province of Misiones, Argentine. In the present work, enzymes produced by this yeast strain were characterized, and polygalacturonase physicochemical properties were determined in order to evaluate the application of the supernatant in the maceration of potato tissues. W. anomalus was able to produce PG in liquid medium containing glucose and citrus pectin, whose mode of action was mainly of endo type. The supernatant did not exhibit esterase or lyase activity. No others enzymes, capable of hydrolyzing cell wall polymers, such as cellulases and xylanases, were detected. PG showed maximal activity at pH 4.5 and at temperature range between 40°C and 50°C. It was stable in the pH range from 3.0 to 6.0 and up to 50°C at optimum pH. The enzymatic extract macerated potato tissues efficiently. Volume of single cells increased with the agitation speed. The results observed make the enzymatic extract produced by W. anomalus appropriate for future application in food industry, mainly for the production of fruit nectars or mashed of vegetables such as potato or cassava, of regional interest in the province of Misiones, Argentine. 1. Introduction Enzymes hydrolyzing pectic substances, which contribute to the firmness and structure of plant cells, are known as pectinolytic enzymes or pectinases. Based on their mode of action, these enzymes include polygalacturonase (PG), pectinesterase (PE), and lyases (pectinlyase (PL) and pectatelyase (PAL)). PG, PL, and PAL are depolymerizing enzymes, which split the α-(1,4)-glycosidic bonds between galacturonic monomers in pectic substances either by hydrolysis (PG) or by β-elimination (PL, PAL). PG catalyzes the hydrolytic cleavage of the polygalacturonic acid chain while PL performs a transeliminative split of pectin molecule, producing an unsaturated product. PE catalyzes the de-esterification of the methoxyl group of pectin, forming pectic acid [1, 2]. There are two types of PGases with different technological applications: exopolygalacturonases (exo-PG) that break down the distal groups of the pectin molecule, reducing chain length relatively slowly, and endopolygalacturonases (endo-PG) which act randomly on all the links in the chain, reducing molecular dimensions and viscosity more rapidly [3]. Pectinolytic enzymes play an important role in food technology, mainly in the processing of fruit juices and wines and in the maceration of plant tissue. Maceration is a process by which organized tissue is transformed into a suspension of

References

[1]  R. S. Jayani, S. Saxena, and R. Gupta, “Microbial pectinolytic enzymes: a review,” Process Biochemistry, vol. 40, no. 9, pp. 2931–2944, 2005.
[2]  C. Tari, N. G?gus, and F. Tokatli, “Optimization of biomass, pellet size and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology,” Enzyme and Microbial Technology, vol. 40, no. 5, pp. 1108–1116, 2007.
[3]  M. Fernández-González, J. F. úbeda, T. G. Vasudevan, R. R. Cordero Otero, and A. I. Briones, “Evaluation of polygalacturonase activity in Saccharomyces cerevisiae wine strains,” FEMS Microbiology Letters, vol. 237, no. 2, pp. 261–266, 2004.
[4]  W. Pilnik and A. G. J. Voragen, “The significance of endogenous and exogenous pectic enzymes in fruit and vegetable processing,” in Food Enzymology, vol. 1, pp. 303–336, 1991.
[5]  J. A. V. Costa, E. Colla, G. Magagnin, L. Oliveria dos Santos, M. Vendruscolo, and T. E. Bertolin, “Simultaneous amyloglucosidase and exo-polygalacturonase production by Aspergillus niger using solid-state fermentation,” Brazilian Archives of Biology and Technology, vol. 50, no. 5, pp. 759–766, 2007.
[6]  T. Nakamura, R. A. Hours, and T. Sakai, “Enzymatic maceration of vegetables with protopectinases,” Journal of Food Science, vol. 60, pp. 468–472, 1995.
[7]  S. N. Gummadi and T. Panda, “Purification and biochemical properties of microbial pectinases: a review,” Process Biochemistry, vol. 38, no. 7, pp. 987–996, 2003.
[8]  E. Geralda da Silva, M. de Fátima Borges, C. Medina, R. Hilsdorf Piccoli, and R. Freitas Schwan, “Pectinolytic enzymes secreted by yeasts from tropical fruits,” FEMS Yeast Research, vol. 5, no. 9, pp. 859–865, 2005.
[9]  C. P. Kurtzman, C. J. Robnett, and E. Basehoar-Powers, “Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov.,” FEMS Yeast Research, vol. 8, no. 6, pp. 939–954, 2008.
[10]  S. F. Cavalitto, J. A. Arcas, and R. A. Hours, “Pectinase production profile of Aspergillus foetidus in solid state cultures at different acidities,” Biotechnology Letters, vol. 18, no. 3, pp. 251–256, 1996.
[11]  G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959.
[12]  P. Albersheim, H. Neukom, and H. Deuel, “Splitting of pectin chain molecules in neutral solutions,” Archives of Biochemistry and Biophysics, vol. 90, no. 1, pp. 46–51, 1960.
[13]  C. Vilari?o, J. F. Del Giorgio, R. A. Hours, and O. Cascone, “Spectrophotometric method for fungal pectinesterase activity determination,” LWT—Food Science and Technology, vol. 26, no. 2, pp. 107–110, 1993.
[14]  J. C. Contreras Esquivel and C. E. Voget, “Purification and partial characterization of an acidic polygalacturonase from Aspergillus kawachii,” Journal of Biotechnology, vol. 110, no. 1, pp. 21–28, 2004.
[15]  S. Yoshitake, T. Numata, T. Katsuragi, R. A. Hours, and T. Sakai, “Purification and characterization of a pectin-releasing enzyme produced by Kluyveromyces wickerhamii,” Journal of Fermentation and Bioengineering, vol. 77, no. 4, pp. 370–375, 1994.
[16]  R. F. Schwan, R. M. Cooper, and A. E. Wheals, “Endopolygalacturonase secretion by Kluyveromyces marxianus and other cocoa pulp-degrading yeasts,” Enzyme and Microbial Technology, vol. 21, no. 4, pp. 234–244, 1997.
[17]  A. R. García, M. I. Balbín, J. C. Cabrera, and A. Castelvi, “Actividad endopoligalacturonasa de un preparado de la levadura Kluyveromyces marxianus aislada de la pulpa de café,” Cultivos Tropicales, vol. 23, no. 1, pp. 67–72, 2002.
[18]  P. Blanco, C. Sieiro, and T. G. Villa, “Production of pectic enzymes in yeasts,” FEMS Microbiology Letters, vol. 175, no. 1, pp. 1–9, 1999.
[19]  F. Radoi, M. Kishida, and H. Kawasaki, “Endo-polygalacturonase in Saccharomyces wine yeasts: effect of carbon source on enzyme production,” FEMS Yeast Research, vol. 5, no. 6-7, pp. 663–668, 2005.
[20]  W. Masoud and L. Jespersen, “Pectin degrading enzymes in yeasts involved in fermentation of coffea arabica in East Africa,” International Journal of Food Microbiology, vol. 110, no. 3, pp. 291–296, 2006.
[21]  F. M. Rombouts and W. Pilnik, “Pectic enzymes,” in Microbial Enzymes and Bioconversions, A. H. Rose, Ed., pp. 227–282, Academic Press, London, UK, 1980.
[22]  D. B. Pedrolli and E. C. Carmona, “Purification and characterization of the exopolygalacturonase produced by Aspergillus giganteus in submerged cultures,” Journal of Industrial Microbiology and Biotechnology, vol. 37, no. 6, pp. 567–573, 2010.
[23]  P. Blanco, C. Sieiro, A. Díaz, and T. G. Villa, “Differences between pectic enzymes produced by laboratory and wild-type strains of Saccharomyces cerevisiae,” World Journal of Microbiology and Biotechnology, vol. 13, no. 6, pp. 711–712, 1997.
[24]  S. Moyo, B. A. Gashe, E. K. Collison, and S. Mpuchane, “Optimising growth conditions for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology,” International Journal of Food Microbiology, vol. 85, no. 1-2, pp. 87–100, 2003.
[25]  E. S. Martins, D. Silva, R. S. R. Leite, and E. Gomes, “Purification and characterization of polygalacturonase produced by thermophilic Thermoascus aurantiacus CBMAI-756 in submerged fermentation,” Antonie van Leeuwenhoek, vol. 91, no. 3, pp. 291–299, 2007.
[26]  P. Blanco, C. Sieiro, A. Diaz, and T. G. Villa, “Production and partial characterization of an endopolygalacturonase from Saccharomyces cerevisiae,” Canadian Journal of Microbiology, vol. 40, no. 11, pp. 974–977, 1994.
[27]  C. Tari, N. Dogan, and N. Gogus, “Biochemical and thermal characterization of crude exo-polygalacturonase produced by Aspergillus sojae,” Food Chemistry, vol. 111, no. 4, pp. 824–829, 2008.
[28]  S. F. Cavalitto, R. A. Hours, and C. F. Mignone, “Growth and protopectinase production of Geotrichum klebahnii in batch and continuous cultures with synthetic media,” Journal of Industrial Microbiology and Biotechnology, vol. 25, no. 5, pp. 260–265, 2000.
[29]  N. L. Rojas, S. F. Cavalitto, C. F. Mignone, and R. A. Hours, “Role of PPase-SE in Geotrichum klebahnii, a yeast-like fungus able to solubilize pectin,” Electronic Journal of Biotechnology, vol. 11, no. 1, pp. 1–8, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133