全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antioxidant and Hepatoprotective Properties of Tofu (Curdle Soymilk) against Acetaminophen-Induced Liver Damage in Rats

DOI: 10.1155/2013/230142

Full-Text   Cite this paper   Add to My Lib

Abstract:

The antioxidant and hepatoprotective properties of tofu using acetaminophen to induce liver damage in albino rats were evaluated. Tofus were prepared using calcium chloride, alum, and steep water as coagulants. The polyphenols of tofu were extracted and their antioxidant properties were determined. The weight gain and feed intake of the rats were measured. The analysis of serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) activities and the concentrations of albumin, total protein, cholesterol, and bilirubin were analyzed. The result reveals that the antioxidant property of both soluble and bound polyphenolic extracts was significantly higher in all tofus, but the steep water coagulated tofu was recorded higher. Rats fed with various tofus and acetaminophen had their serum ALP, ALT, AST, and LDH activities; total cholesterol; and bilirubin levels significantly ( ) reduced, and total protein and albumin concentrations increased when compared with basal diet and acetaminophen administered group. Therefore, all tofus curdled with various coagulants could be used to prevent liver damage caused by oxidative stress. 1. Introduction Reactive oxygen species (ROS) have been implicated in more than 100 diseases [1]. Foods (tubers, grains, fruits, and vegetables) provide a wide variety of ROS-scavenging antioxidants such as phytochemical and antioxidant vitamins [2, 3]. The increased consumption of fruits and vegetables, containing high levels of phytochemicals, has been recommended to prevent or reduce oxidative stress in the human body [2–4]. The natural antioxidant defense mechanisms can be insufficient and hence dietary intake of antioxidant components is important and recommended [5]. Liver disease is a worldwide problem. Conventional drugs used in the treatment of liver diseases are sometimes inadequate and can have serious adverse effects [6]. Soybeans are inexpensive and serve as high quality protein source. Soymilk and tofu consumption is increasing in Nigeria due to animal diseases such as mad cow disease, global shortage of animal protein, strong demand for healthy (cholesterol-free and low in saturated fat) and religious halal food, and economic reasons [7]. The greater acceptance of soy foods by the general population is due to increased recognition of the health benefits of soy foods, especially by those who want to reduce their consumption of animal products [8]. Tofu, also known as soybean curd, is a soft cheese-like food made by curdling fresh hot soymilk with a

References

[1]  Y. Ali, O. Munir, and B. Vahit, “The antioxidant activity of leaves of Cydonia vulgaris,” Turkish Journal of Medical Sciences, vol. 31, pp. 23–27, 2001.
[2]  J. Sun, Y. F. Chu, X. Wu, and R. H. Liu, “Antioxidant and antiproliferative activities of common fruits,” Journal of Agricultural and Food Chemistry, vol. 50, no. 25, pp. 7449–7454, 2002.
[3]  R. H. Liu, “Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals,” American Journal of Clinical Nutrition, vol. 78, no. 3, pp. 517S–520S, 2003.
[4]  Y. F. Chu, J. Sun, X. Wu, and R. H. Liu, “Antioxidant and antiproliferative activities of common vegetables,” Journal of Agricultural and Food Chemistry, vol. 50, no. 23, pp. 6910–6916, 2002.
[5]  P. D. Duh, “Antioxidant activity of Burdock, its scavenging effect on free radical and active oxygen,” Journal of the American Oil Chemists' Society, vol. 75, no. 4, pp. 455–461, 1998.
[6]  T. Patel, D. Shirode, S. Pal Roy, S. Kumar, and S. Ramachandra Setty, “Evaluation of antioxidant and hepatoprotective effects of 70% ethanolic bark extract of Albizzia lebbeck in rats,” International Journal of Research in Pharmaceutical Sciences, vol. 1, no. 3, pp. 270–276, 2010.
[7]  M. A. Asgar, A. Fazilah, N. Huda, R. Bhat, and A. A. Karim, “Nonmeat protein alternatives as meat extenders and meat analogs,” Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 5, pp. 513–529, 2010.
[8]  V. Poysa and L. Woodrow, “Stability of soybean seed composition and its effect on soymilk and tofu yield and quality,” Food Research International, vol. 35, no. 4, pp. 337–345, 2002.
[9]  O. S. Shokunbi, O. O. Babajide, D. O. Otaigbe, and G. O. Tayo, “Effect of coagulants on the yield nutrient and antinutrient composition of Tofu,” Archives of Applied Science Research, vol. 3, no. 3, pp. 522–527, 2011.
[10]  K. Descheemaeker and I. Debruyne, Clinical Evidence, Dietetic Applications, Garant, 2001.
[11]  P. A. Murphy and L. A. Wilson, “Soybean protein composition and tofu quality,” Food Technology, vol. 51, no. 3, pp. 86–88, 1997.
[12]  G. Paganga, N. Miller, and C. A. Rice-Evans, “The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute?” Free Radical Research, vol. 30, no. 2, pp. 153–162, 1999.
[13]  S. W. Qader, M. A. Abdulla, L. S. Chua, N. Najim, M. M. Zain, and S. Hamdan, “Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants,” Molecules, vol. 16, no. 4, pp. 3433–3443, 2011.
[14]  A. L. Miller, “Antioxidant flavonoids: structure, function and clinical usage,” Alternative Medicine Review, vol. 1, no. 2, pp. 103–111, 1996.
[15]  G. Oboh, “Coagulants modulate the hypocholesterolemic effect of tofu (coagulated soymilk),” African Journal of Biotechnology, vol. 5, no. 3, pp. 290–294, 2006.
[16]  F. M. Sacks, A. Lichtenstein, L. Van Horn, W. Harris, P. Kris-Etherton, and M. Winston, “Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee,” Circulation, vol. 113, no. 7, pp. 1034–1044, 2006.
[17]  J. Parma, H. R.Shama, and R. Verma, “Effect of source and coagulants on the Physicochemical and organoleptic evaluation of soy tofu,” Journal of Dairying Foods & Home Sciences, vol. 26, no. 2, pp. 69–74, 2007.
[18]  D. G. Davidson and W. N. Eastham, “Acute liver necrosis following overdose of paracetamol,” British Medical Journal, vol. 5512, pp. 497–499, 1966.
[19]  L. P. James, P. R. Mayeux, and J. A. Hinson, “Acetaminophen-induced hepatotoxicity,” Drug Metabolism and Disposition, vol. 31, no. 12, pp. 1499–1506, 2003.
[20]  NIH Publication no. 85-23, “Respect for life,” National Institute of Environmental Health Sciences-NIEHS, 1985, http://www.niehs.nih.gov/.
[21]  E. E. Nwanna and G. Oboh, “Antioxidant and hepatoprotective properties of polyphenol extracts from Telfairia occidentalis (Fluted Pumpkin) leaves on acetaminophen induced liver damage,” Pakistan Journal of Biological Sciences, vol. 10, no. 16, pp. 2682–2687, 2007.
[22]  F. Ursini, M. Maiorino, P. Morazzoni, A. Roveri, and G. Pifferi, “A novel antioxidant flavonoid (IdB 1031) affecting molecular mechanisms of cellular activation,” Free Radical Biology and Medicine, vol. 16, no. 5, pp. 547–553, 1994.
[23]  O. A. Semeon, “Haematological Characteristics of Clarias gariepinus (Buchell, 1822) Juveniles Fed on Poultry Hatchery Waste,” American-Eurasian Journal of Toxicological Sciences, vol. 2, no. 4, pp. 190–195, 2010.
[24]  H. ?bek, S. U?ra?, I. Bayram et al., “Hepatoprotective effect of Foeniculum vulgare essential oil: a carbon-tetrachloride induced liver fibrosis model in rats,” Scandinavian Journal of Laboratory Animal Science, vol. 31, no. 1, pp. 201–211, 2004.
[25]  O. Y. Okafor, O. L. Erukainure, J. A. Ajiboye, R. O. Adejobi, F. O. Owolabi, and S. B. Kosoko, “Pineapple peel extract modulates lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats,” Asian Pacific Journal of Tropical Medicine, vol. 1, no. 1, pp. 11–14, 2011.
[26]  N. Ara and H. Nur, “In vitro antioxidant methanolic leaves and flowers extracts of Lippia alba,” Research Journal of Medical Sciences, vol. 4, no. 1, pp. 107–110, 2009.
[27]  G. Oboh and J. B. T. Rocha, “Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver,” European Food Research and Technology, vol. 225, no. 2, pp. 239–247, 2007.
[28]  G. Oboh and A. A. Akindahunsi, “Change in the ascorbic acid, total phenol and antioxidant activity of sun-dried commonly consumed green leafy vegetables in Nigeria,” Nutrition and Health, vol. 18, no. 1, pp. 29–36, 2004.
[29]  K. G. Aning, A. G. Ologun, A. Onifade, J. A. Alokan, A. I. Adekola, and V. A. Aletor, “Effect of replacing dried brewer's grain with 'sorghum rootlets' on growth, nutrient utilisation and some blood constituents in the rat,” Animal Feed Science and Technology, vol. 71, no. 1-2, pp. 185–190, 1998.
[30]  L. S. Eriksson, U. Broome, M. Kalin, and M. Lindholm, “Hepatotoxicity due to repeated intake of low doses of paracetamol,” Journal of Internal Medicine, vol. 231, no. 5, pp. 567–570, 1992.
[31]  K. Sai, A. Takagi, T. Umemura, and Y. Kurokawa, “Toxicology,” Journal of Environmental Pathology, vol. 11, pp. 139–143, 1992.
[32]  S. L. Arnaiz, S. Llesuy, J. C. Cutrin, and A. Boveris, “Oxidative stress by acute acetaminophen administration in mouse liver,” Free Radical Biology and Medicine, vol. 19, no. 3, pp. 303–310, 1995.
[33]  M. A. Tirmenstein and S. D. Nelson, “Acetaminophen-induced oxidation of protein thiols. Contribution of impaired thiol-metabolizing enzymes and the breakdown of adenine nucleotides,” Journal of Biological Chemistry, vol. 265, no. 6, pp. 3059–3065, 1990.
[34]  T. Anderson and A. J. Theron, “Antioxidant and tissue protective function of ascorbic acid,” World Review of Nutritional and Diabetes, vol. 62, pp. 37–38, 1990.
[35]  M. Alía, C. Horcajo, L. Bravo, and L. Goya, “Effect of grape antioxidant dietary fiber on the total antioxidant capacity and the activity of liver antioxidant enzymes in rats,” Nutrition Research, vol. 23, no. 9, pp. 1251–1267, 2003.
[36]  S. Ravikumar, M. Gnanadesigan, J. Seshserebiah, and S. Jacob Inbanseon, “Hepatoprotective effect of an Indian salt marsh herb Suaeda monoica Forsk. Ex. Gmel against concanavalin: an induced toxicity in rats,” Life Sciences and Medicine Research, vol. 2010, p. LSMR-2, 2010.
[37]  K. Pratibha, U. Anand, and R. Agarwal, “Serum adenosine deaminase, 5′ nucleotidase and malondialdehyde in acute infective hepatitis,” Indian Journal of Clinical Biochemistry, vol. 19, no. 2, pp. 128–131, 2004.
[38]  S. V. Sureshkumar and S. H. Mishra, “Hepatoprotective activity of extracts from Pergularia daemia Forsk. against carbon tetrachloride induced toxicity in rats,” Pharmacognosy Magazine, vol. 3, no. 11, pp. 187–191, 2007.
[39]  D. Awang, “Milk Thistle,” Canadian Pharmacists Journal, vol. 23, pp. 749–754, 1993.
[40]  O. M. Iniaghe, S. O. Malomo, J. O. Adebayo, and R. O. Arise, “Evaluation of the antioxidant and hepatoprotective properties of the methanolic extract of Acalypha racemosa leaf in carbon tetrachloride-treated rats,” African Journal of Biotechnology, vol. 7, no. 11, pp. 1716–1720, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413