全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Family-Specific Degenerate Primer Design: A Tool to Design Consensus Degenerated Oligonucleotides

DOI: 10.1155/2013/383646

Full-Text   Cite this paper   Add to My Lib

Abstract:

Designing degenerate PCR primers for templates of unknown nucleotide sequence may be a very difficult task. In this paper, we present a new method to design degenerate primers, implemented in family-specific degenerate primer design (FAS-DPD) computer software, for which the starting point is a multiple alignment of related amino acids or nucleotide sequences. To assess their efficiency, four different genome collections were used, covering a wide range of genomic lengths: Arenavirus ( nucleotides), Baculovirus ( to ?bp), Lactobacillus sp. ( to ?bp), and Pseudomonas sp. ( to ?bp). In each case, FAS-DPD designed primers were tested computationally to measure specificity. Designed primers for Arenavirus and Baculovirus were tested experimentally. The method presented here is useful for designing degenerate primers on collections of related protein sequences, allowing detection of new family members. 1. Introduction The polymerase chain reaction (PCR), one of the most important analytical tools of molecular biology, allows a highly sensitive detection and specific genotyping of environmental samples, specially important in the metagenomic era [1]. A large list of genome typing applications includes arbitrarily primed PCR [2] (AP-PCR), random amplified primed DNAs [3] (RAPDs), PCR restriction fragment length polymorphism [4] (PCR-RFLP), and direct amplification of length polymorphism [5] (DALP). All of these techniques require a high quality and purity of the specific target template, because any available DNA could be substrate for the amplification step. In view of this, genotyping procedures of large genomes or complex samples are more reliable if they are based on DNA amplification using specific oligonucleotides. Therefore, primer design is crucial for efficient and successful amplification. Several primer design programs are available (e.g., OLIGO [6], OSP [7, 8], Primer Master [9], PRIDE [10], Primer3 [11], among others). Regardless of each computational working strategy, all of these use a set of common criteria (e.g., content, melting temperature, etc.) to evaluate the quality of primer candidates in a specific target region selected by the user. Alternative programs are aimed at more specific purposes, such as selection of primers that bind to conserved genomic regions based on multiple sequence alignments [12, 13], primer design for selective amplification of protein-coding regions [14], oligonucleotide design for site-directed mutagenesis [15], and primer design for hybridization [16]. Usually, the design of truly specific primers requires the

References

[1]  K. Nelson, Metagenomics as a Tool to Study Biodiversity, ASM Press, Washington, DC, USA, 2008.
[2]  J. Welsh and M. McClelland, “Fingerprinting genomes using PCR with arbitrary primers,” Nucleic Acids Research, vol. 18, no. 24, pp. 7213–7218, 1990.
[3]  J. G. K. Williams, A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey, “DNA polymorphisms amplified by arbitrary primers are useful as genetic markers,” Nucleic Acids Research, vol. 18, no. 22, pp. 6531–6535, 1990.
[4]  W. C. Nichols, S. E. Lyons, J. S. Harrison, R. L. Cody, and D. Ginsburg, “Severe von Willebrand disease due to a defect at the level of von Willebrand factor mRNA expression: detection by exonic PCR-restriction fragment length polymorphism analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3857–3861, 1991.
[5]  E. Desmarais, I. Lanneluc, and J. Lagnel, “Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species,” Nucleic Acids Research, vol. 26, no. 6, pp. 1458–1465, 1998.
[6]  W. Rychlik and R. E. Rhoads, “A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA,” Nucleic Acids Research, vol. 17, no. 21, pp. 8543–8551, 1989.
[7]  L. Hillier and P. Green, “OSP: a computer program for choosing PCR and DNA sequencing primers,” PCR Methods and Applications, vol. 1, no. 2, pp. 124–128, 1991.
[8]  P. Li, K. C. Kupfer, C. J. Davies, D. Burbee, G. A. Evans, and H. R. Garner, “PRIMO: a primer design program that applies base quality statistics for automated large-scale DNA sequencing,” Genomics, vol. 40, no. 3, pp. 476–485, 1997.
[9]  V. Proutski and E. C. Holmes, “Primer Master: a new program for the design and analysis of PCR primers,” Computer Applications in the Biosciences, vol. 12, no. 3, pp. 253–255, 1996.
[10]  S. Haas, M. Vingron, A. Poustka, and S. Wiemann, “Primer design for large scale sequencing,” Nucleic Acids Research, vol. 26, no. 12, pp. 3006–3012, 1998.
[11]  S. Rozen and H. Skaletsky, “Primer3 on the WWW for general users and for biologist programmers,” Methods in molecular biology, vol. 132, pp. 365–386, 2000.
[12]  A. Gibbs, J. Armstrong, A. M. Mackenzie, and G. F. Weiller, “The GPRIME package: computer programs for identifying the best regions of aligned genes to target in nucleic acid hybridisation-based diagnostic tests, and their use with plant viruses,” Journal of Virological Methods, vol. 74, no. 1, pp. 67–76, 1998.
[13]  M. D. Gadberry, S. T. Malcomber, A. N. Doust, and E. A. Kellogg, “Primaclade: a flexible tool to find conserved PCR primers across multiple species,” Bioinformatics, vol. 21, no. 7, pp. 1263–1264, 2005.
[14]  C. E. López-Nieto and S. K. Nigam, “Selective amplification of protein-coding regions of large sets of genes using statistically designed primer sets,” Nature Biotechnology, vol. 14, no. 7, pp. 857–861, 1996.
[15]  A. Turchin and J. F. Lawler, “The primer generator: a program that facilitates the selection of oligonucleotides for site-directed mutagenesis,” BioTechniques, vol. 26, no. 4, pp. 672–676, 1999.
[16]  D. Hyndman, A. Cooper, S. Pruzinsky, D. Coad, and M. Mitsuhashi, “Software to determine optimal oligonucleotide sequences based on hybridization simulation data,” BioTechniques, vol. 20, no. 6, pp. 1090–1097, 1996.
[17]  C. Linhart and R. Shamir, “Degenerate primer design: theoretical analysis and the HYDEN program,” Methods in Molecular Biology, vol. 402, pp. 221–244, 2007.
[18]  C. Linhart and R. Shamir, “The degenerate primer design problem,” Bioinformatics, vol. 18, supplement 1, pp. S172–S180, 2002.
[19]  X. Wei, D. N. Kuhn, and G. Narasimhan, “Degenerate primer design via clustering,” IEEE Computer Society Bioinformatics Conference, vol. 2, pp. 75–83, 2003.
[20]  T. M. Rose, J. G. Henikoff, and S. Henikoff, “CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design,” Nucleic Acids Research, vol. 31, no. 13, pp. 3763–3766, 2003.
[21]  T. M. Rose, “CODEHOP-mediated PCR: a powerful technique for the identification and characterization of viral genomes,” Virology Journal, vol. 2, article 20, 2005.
[22]  R. Boyce, P. Chilana, and T. M. Rose, “iCODEHOP: a new interactive program for designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences,” Nucleic Acids Research, vol. 37, no. 2, pp. W222–W228, 2009.
[23]  S. Balla and S. Rajasekaran, “An efficient algorithm for minimum degeneracy primer selection,” IEEE Transactions on Nanobioscience, vol. 6, no. 1, pp. 12–17, 2007.
[24]  J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994.
[25]  S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[26]  J. SantaLucia, “A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1460–1465, 1998.
[27]  A. S. Parodi, D. J. Greenway, H. R. Rugiero et al., “Concerning the epidemic outbreak in Junin,” El Día médico, vol. 30, no. 62, pp. 2300–2301, 1958.
[28]  M. F. Bilen, M. G. Pilloff, M. N. Belaich et al., “Functional and structural characterisation of AgMNPV ie1,” Virus Genes, vol. 35, no. 3, pp. 549–562, 2007.
[29]  J. V. de Castro Oliveira, J. L. C. Wolff, A. Garcia-Maruniak et al., “Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus,” Journal of General Virology, vol. 87, no. 11, pp. 3233–3250, 2006.
[30]  S. E. Go?i, J. A. Iserte, B. I. Stephan, C. S. Borio, P. D. Ghiringhelli, and M. E. Lozano, “Molecular analysis of the virulence attenuation process in Junín virus vaccine genealogy,” Virus Genes, vol. 40, no. 3, pp. 320–328, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413