全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural Variations of Human Glucokinase Glu256Lys in MODY2 Condition Using Molecular Dynamics Study

DOI: 10.1155/2013/264793

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500?Kcal/mol) structure with respect to intact GK (5000?Kcal/mol), and it showed increased γ-turns, decreased β-turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152??2 to 1246.353??2. Molecular docking study revealed variation in docking scores (intact?=??12.199 and mutated?=??8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition. 1. Introduction Type 2 diabetic condition is the increase in blood glucose levels and is due to many reasons; one of the most important factor being MODY2 condition, which is characterized at an early age and is an autosomal dominant inherited disorder [1]. Glucokinase (GK) is one of the potential candidate genes for type 2 diabetes acting through elevated fasting plasma glucose. It is a glucose sensing enzyme that catalyses the formation of glucose-6-phosphate from glucose by utilizing one molecule of ATP and that determines the threshold for glucose-stimulated insulin secretion in islets and controls gluconeogenesis and glycogen synthesis in hepatocytes. It can regulate the insulin secretion and integration of hepatic intermediatory metabolism [2]. GK gene is 52.15 kilo bases (kb) in length and is present on Chromosome 7 p13 with 12 exons and produces a transcript of 2.7?kb. A number of reports suggest that the existence of mutations in the coding region of GK is associated with MODY2 [3–11]. The mutated structures show variation in the affinity for binding with glucose, which may affect the kinetics of GK [12, 13]. In order to assess the mutations in GK affecting the catalysis process, in silico mutagenic studies will help in revealing the effect of

References

[1]  A. T. Hattersley, R. C. Turner, M. A. Permutt et al., “Linkage of type 2 diabetes to the glucokinase gene,” The Lancet, vol. 339, no. 8805, pp. 1307–1310, 1992.
[2]  L. Agius, “Targeting hepatic glucokinase in type 2 diabetes: weighing the benefits and risks,” Diabetes, vol. 58, no. 1, pp. 18–20, 2009.
[3]  M. Stoffel, P. Froguel, J. Takeda et al., “Human glucokinase gene: Isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7698–7702, 1992.
[4]  M. Stoffel, P. Patel, Y. M. D. Lo et al., “Missense glucokinase mutation in maturity-onset diabetes of the young and mutation screening in late-onset diabetes,” Nature Genetics, vol. 2, no. 2, pp. 153–156, 1992.
[5]  H. Sakura, K. Eto, H. Kadowaki et al., “Structure of the human glucokinase gene and identification of a missense mutation in a Japanese patient with early-onset non-insulin-dependent diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 75, no. 6, pp. 1571–1573, 1992.
[6]  J. Hager, H. Blanche, F. Sun et al., “Six mutations in the glucokinase gene identified in MODY by using a nonradioactive sensitive screening technique,” Diabetes, vol. 43, no. 5, pp. 730–733, 1994.
[7]  B. Guazzini, D. Gaffi, D. Mainieri et al., “Three novel missense mutations in the glucokinase gene (G80S; E221K; G227C) in Italian subjects with maturity-onset diabetes of the young (MODY). Mutations in brief no. 162. Online,” Human Mutation, vol. 12, no. 2, article 136, 1998.
[8]  A. T. Hattersley, F. Beards, E. Ballantyne, M. Appleton, R. Harvey, and S. Ellard, “Mutations in the glucokinase gene of the fetus result in reduced birth weight,” Nature Genetics, vol. 19, no. 3, pp. 268–270, 1998.
[9]  M. C. Y. Ng, B. N. Cockburn, T. H. Lindner et al., “Molecular genetics of diabetes mellitus in chinese subjects: Identification of mutations in glucokinase and hepatocyte nuclear factor-1α genes in patients with early-onset type 2 diabetes mellitus/MODY,” Diabetic Medicine, vol. 16, no. 11, pp. 956–963, 1999.
[10]  J. H. Nam, H. C. Lee, Y. H. Kim et al., “Identification of glucokinase mutation in subjects with post-renal transplantation diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 50, no. 3, pp. 169–176, 2000.
[11]  P. R. Nj?lstad, O. S?vik, A. Cuesta-Mu?oz et al., “Neonatal diabetes mellitus due to complete glucokinase deficiency,” The New England Journal of Medicine, vol. 344, no. 21, pp. 1588–1592, 2001.
[12]  M. Gidh-Jain, J. Takeda, L. Z. Xu et al., “Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1932–1936, 1993.
[13]  M. Stoffel, K. L. Bell, C. L. Blackburn et al., “Identification of glucokinase mutations in subjects with gestational diabetes mellitus,” Diabetes, vol. 42, no. 6, pp. 937–940, 1993.
[14]  F. Merino and V. Guixé, “Specificity evolution of the ADP-dependent sugar kinase family—in silico studies of the glucokinase/phosphofructokinase bifunctional enzyme from Methanocaldococcus jannaschii,” FEBS Journal, vol. 275, no. 16, pp. 4033–4044, 2008.
[15]  C. A. F. de Oliveira, M. Zissen, J. Mongon, and J. A. Mccammon, “Molecular dynamics simulations of metalloproteinases types 2 and 3 reveal differences in the dynamic behavior of the S1′ binding pocket,” Current Pharmaceutical Design, vol. 13, no. 34, pp. 3471–3475, 2007.
[16]  J. Zhang, C. Li, T. Shi, K. Chen, X. Shen, and H. Jiang, “Lys169 of human glucokinase is a determinant for glucose phosphorylation: implication for the atomic mechanism of glucokinase catalysis,” PLoS ONE, vol. 4, no. 7, Article ID e6304, 2009.
[17]  S. Nagarajan, J. Rajadas, and E. J. P. Malar, “Density functional theory analysis and spectral studies on amyloid peptide Aβ(28-35) and its mutants A30G and A30I,” Journal of Structural Biology, vol. 170, no. 3, pp. 439–450, 2010.
[18]  J. Takeda, M. Gidh-Jain, L. Z. Xu et al., “Structure/function studies of human β-cell glucokinase. Enzymatic properties of a sequence polymorphism, mutations associated with diabetes, and other site-directed mutants,” The Journal of Biological Chemistry, vol. 268, no. 20, pp. 15200–15204, 1993.
[19]  Z. Dosztányi, C. Magyar, G. E. Tusnády, M. Cserzo, A. Fiser, and I. Simon, “Servers for sequence-structure relationship analysis and prediction,” Nucleic Acids Research, vol. 31, no. 13, pp. 3359–3363, 2003.
[20]  M. I. Sadowski and D. T. Jones, “The sequence-structure relationship and protein function prediction,” Current Opinion in Structural Biology, vol. 19, no. 3, pp. 357–362, 2009.
[21]  G. I. Bell, S. J. Pilkis, I. T. Weber, and K. S. Polonsky, “Glucokinase mutations, insulin secretion, and diabetes mellitus,” Annual Review of Physiology, vol. 58, pp. 171–186, 1996.
[22]  J. Molnes, L. Bj?rkhaug, O. S?vik, P. R. Nj?lstad, and T. Flatmark, “Catalytic activation of human glucokinase by substrate binding—residue contacts involved in the binding of D-glucose to the super-open form and conformational transitions,” FEBS Journal, vol. 275, no. 10, pp. 2467–2481, 2008.
[23]  H. M. Berman, J. Westbrook, Z. Feng, et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000.
[24]  C. H. Wu, R. Apweiler, A. Bairoch et al., “The universal protein resource (UniProt): an expanding universe of protein information,” Nucleic Acids Research, vol. 34, pp. D187–D191, 2006.
[25]  R. A. Laskowski, “PDBsum: summaries and analyses of PDB structures,” Nucleic Acids Research, vol. 29, no. 1, pp. 221–222, 2001.
[26]  R. A. Laskowski, E. G. Hutchinson, A. D. Michie, A. C. Wallace, M. L. Jones, and J. M. Thornton, “PDBsum: a web-based database of summaries and analyses of all PDB structures,” Trends in Biochemical Sciences, vol. 22, no. 12, pp. 488–490, 1997.
[27]  D. Seeliger and B. L. de Groot, “Ligand docking and binding site analysis with PyMOL and Autodock/Vina,” Journal of Computer-Aided Molecular Design, vol. 24, no. 5, pp. 417–422, 2010.
[28]  E. Ramirez, A. Cruz, D. Rodriguez et al., “Effects of active site mutations in haemoglobin i from Lucina pectinata: a molecular dynamic study,” Molecular Simulation, vol. 34, no. 7, pp. 715–725, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133