全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of -Galactosidase Produced

DOI: 10.1155/2013/920759

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120?rpm) that is 190.3, 174.5, 93.9 and 28.8?U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at ?20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates. 1. Introduction The α-galactosidases are the group of glycoside hydrolases (glycosidases or carbohydrases) (EC 3.2.1); the enzymes that catalyze hydrolytic cleavage of O-glycoside bond and belong to the enzymes of carbohydrate catabolism. The α-galactosidases (EC 3.2.1.22, α-D-galactoside galactohydrolase) hydrolyze the terminal α-1,6-linked nonreducing α-D-galactose residues from linear and branched oligosaccharides and polysaccharides like melibiose, raffinose, stachyose, short fragments of galacto(gluco)mannans, and galactolipid. According to their substrate specificities, α-galactosidases can be divided into two groups [1]. The first group contains α-galactosidases active only on oligosaccharides with low degree of polymerization, for example melibiose, raffinose, stachyose, and short fragments of galacto(gluco)mannans. These enzymes are usually very active on artificial substrates like p-nitrophenyl-α-D-galactopyranosides [2]. The second group of α-galactosidases is active on polymeric substrates. However, similar to the enzymes of the first group, they attack short oligosaccharides, mainly fragments of degraded polymers, as well as artificial α-galactosides. Galactose is found in many different oligo- and polysaccharides

References

[1]  P. M. Dey and J. B. Pridham, “Biochemistry of α-galactosidases,” Advances in Enzymology and Related Areas of Molecular Biology, vol. 36, pp. 91–130, 1972.
[2]  P. Ademark, M. Larsson, F. Tjerneld, and H. St?lbrand, “Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities,” Enzyme and Microbial Technology, vol. 29, no. 6-7, pp. 441–448, 2001.
[3]  B. McCleary and N. K. Matheson, “Enzymatic analysis of polysaccharide structure,” Advances in Carbohydrate Chemistry and Biochemistry, vol. 44, pp. 323–385, 1986.
[4]  G. O. Aspinall, “Pectic plant gums and other plant polysaccharides,” in The Carbohydrutes, W. Pigman and D. Horton, Eds., vol. IIB, pp. 515–536, Academic Press, New York, NY, USA, 1970.
[5]  H. Shibuya, H. Kobayashi, G. G. Park et al., “Purification and some properties of alpha-galactosidase from Penicillium purpurogenum,” Bioscience, Biotechnology, and Biochemistry, vol. 59, no. 12, pp. 2333–2335, 1995.
[6]  P. V. Bulpin, M. J. Gidley, R. Jeffcoat, and D. R. Underwood, “Development of a biotechnological process for the modification of galactomannan polymers with plant α-galactosidase,” Carbohydrate Polymers, vol. 12, no. 2, pp. 155–168, 1990.
[7]  L. L. Lenny, R. Hurst, J. Goldstein, and R. A. Galbraith, “Transfusions to group O subjects of 2 units of red cells enzymatically converted from group B to group O,” Transfusion, vol. 34, no. 3, pp. 209–214, 1994.
[8]  N. Asano, S. Ishii, H. Kizu et al., “In vitro inhibition and intracellular enhancement of lysosomal α-galactosidase a activity in fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives,” European Journal of Biochemistry, vol. 267, no. 13, pp. 4179–4186, 2000.
[9]  T. Takenaka, G. J. Murray, G. Qin et al., “Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7515–7520, 2000.
[10]  R. J. Desnick, Y. A. Ioannou, and C. M. Eng, “α-galactosidase A deficiency: Fabry disease,” in The Metabolic and Molecular Basis of Inherited Diseases, C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds., pp. 2741–2784, McGraw-Hill, New York, NY, USA, 1995.
[11]  P. M. Dey, S. Patel, and M. D. Brownleader, “Induction of α-galactosidase in Penicillium ochrochloron by guar (Cyamopsis tetragonobola) gum,” Biotechnology and Applied Biochemistry, vol. 17, pp. 361–371, 1993.
[12]  P. Manzanares, L. H. de Graaff, and J. Visser, “Characterization of galactosidases from Aspergillus niger: purification of a novel α-galactosidase activity,” Enzyme and Microbial Technology, vol. 22, no. 5, pp. 383–390, 1998.
[13]  S. M. Kotwal, M. M. Gote, S. R. Sainkar, M. I. Khan, and J. M. Khire, “Production of α-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soyamilk hydrolysis,” Process Biochemistry, vol. 33, no. 3, pp. 337–343, 1998.
[14]  Y. Oda and K. Tonomura, “α-Galactosidase from the yeast Torulaspora delbrueckii IFO 1255,” Journal of Applied Bacteriology, vol. 80, no. 2, pp. 203–208, 1996.
[15]  M. S. Garro, G. F. de Valdez, and G. S. de Giori, “Temperature effect on the biological activity of Bifidobacterium longum CRL 849 and Lactobacillus fermentum CRL 251 in pure and mixed cultures grown in soymilk,” Food Microbiology, vol. 21, no. 5, pp. 511–518, 2004.
[16]  A. M. Elshafei, M. S. Foda, A. About-Enein, A. S. Afify, and N. H. Ali, “Purification and enzymatic properties of α-galactosidase from Penicillium janthinellum,” Acta Biotechnologica, vol. 13, no. 4, pp. 351–359, 1993.
[17]  L. D. Varbanets, V. M. Malanchuk, T. T. Buglova, and R. A. Kuhlmann, “Penicillium sp. 23 alpha-galactosidase: purification and substrate specificity,” Carbohydrate Polymers, vol. 44, no. 4, pp. 357–363, 2001.
[18]  A. M. Mckay, “Production of extracellular β-glucosidase and α-galactosidase during fungal growth on polygalacturonate,” Journal of Food Science, vol. 56, pp. 1749–1752, 1991.
[19]  S. T. Rezende, V. M. Guimar?es, M. C. Rodrigues, and C. R. Felix, “Purification and characterization of an α-galactosidase from Aspergillus fumigates,” Brazilian Archives of Biology and Technology, vol. 48, pp. 195–202, 2005.
[20]  V. M. Guimar?es, S. T. de Rezende, M. A. Moreira, E. G. de Barros, and C. R. Felix, “Characterization of α-galactosidases from germinating soybean seed and their use for hydrolysis of oligosaccharides,” Phytochemistry, vol. 58, no. 1, pp. 67–73, 2001.
[21]  R. P. Vries and J. Visser, “Aspergillus enzymes involved in degradation of plant cell wall polysaccharides,” Microbiology and Molecular Biology Reviews, vol. 65, no. 4, pp. 497–522, 2001.
[22]  J. H. Warcap, “Studies on the occurrence and activity of fungi in wheat field soil,” Transactions of the British Mycological Society, vol. 40, pp. 237–262, 1957.
[23]  J. I. Pitt, The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces, Academic Press, New York, NY, USA, 1979.
[24]  G. S. . de Hoog, The Black Yeasts and Allied Hyphomycetes, Studies in Mycology, Centrralhureau voor Schimmelcultures, Baarn, The Netherlands, 1977.
[25]  K. B. Raper and D. I. Fennell, The Genus Aspergillus, Williams & Wilkins, Baltimore, Md, USA, 1965.
[26]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[27]  G. G. Park, S. Y. Lee, B. K. Park, S. S. Ham, and J. H. Lee, “Characteristic features of an α-galactosidase from Penicillium purpurogenum,” Journal of Microbiology and Biotechnology, vol. 1, pp. 90–95, 1991.
[28]  P. Chaverri and G. J. Samuels, “Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores,” Studies in Mycology, vol. 2003, no. 48, pp. 1–113, 2003.
[29]  L. Nevarez, V. Vasseur, G. le Dréan et al., “Isolation and analysis of differentially expressed genes in Penicillium glabrum subjected to thermal stress,” Microbiology, vol. 154, no. 12, pp. 3752–3765, 2008.
[30]  W. M. Jaklitsch, G. J. Samuels, S. L. Dodd, B. S. Lu, and I. S. Druzhinina, “Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia,” Studies in Mycology, vol. 56, pp. 135–177, 2006.
[31]  P. Chaverri, L. A. Castlebury, G. J. Samuels, and D. M. Geiser, “Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex,” Molecular Phylogenetics and Evolution, vol. 27, no. 2, pp. 302–313, 2003.
[32]  G. J. Samuels and A. Ismaiel, “Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species,” Mycologia, vol. 101, no. 1, pp. 142–146, 2009.
[33]  G. Sangeetha, A. Anand, and S. Usha Rani, “Morphological and molecular characterisation of Lasiodiplodia theobromae from various banana cultivars causing crown rot disease in fruits,” Archives of Phytopathology and Plant Protection, vol. 45, no. 4, pp. 475–486, 2012.
[34]  S. T. de Rezende and C. R. Felix, “Raffinose-hydrolyzing activity of Aspergillus fumigatus,” Biotechnology Letters, vol. 19, no. 3, pp. 217–220, 1997.
[35]  S. T. de Rezende and C. R. Felix, “Production and characterization of Raffinose-hydrolysing and invertase activities of Aspergillus fumigatus ,” Folia Microbiologica, vol. 44, no. 2, pp. 191–195, 1999.
[36]  S. Zeilinger, D. Kristufek, I. Arisan-Atac, R. Hodits, and C. P. Kubicek, “Conditions of formation, purification, and characterization of an α-galactosidase of Trichoderma reesei RUT C-30,” Applied and Environmental Microbiology, vol. 59, no. 5, pp. 1347–1353, 1993.
[37]  E. Luonteri, M. Tenkanen, and L. Viikari, “Substrate specificities of Penicillium simplicissimumα-galactosidases,” Enzyme and Microbial Technology, vol. 22, no. 3, pp. 192–198, 1998.
[38]  M. L. F. Giuseppin, J. W. Almkerk, J. C. Heistek, and C. T. Verrips, “Comparative study on the production of guar α-galactosidase by Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2 in continuous cultures,” Applied and Environmental Microbiology, vol. 59, no. 1, pp. 52–59, 1993.
[39]  G. S. Anisha and P. Prema, “Production of α-galactosidase by a novel actinomycete Streptomyces griseoloalbus and its application in soymilk hydrolysis,” World Journal of Microbiology and Biotechnology, vol. 23, no. 6, pp. 859–864, 2007.
[40]  A. A. El-Gindy, U. F. Ali, Z. M. Ibrahim, and G. S. Isaac, “A Cost-effective medium for enhanced production of extracellular α-galactosidase in solid substrate cultures of Aspergillus awamori and A. carbonarius,” Australian Journal of Basic and Applied Sciences, vol. 2, no. 4, pp. 880–889, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133