全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Predicted Exercise Capacity Equations and the Effect of Actual versus Ideal Body Weight among Subjects Undergoing Cardiopulmonary Exercise Testing

DOI: 10.1155/2013/940170

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Oxygen uptake at maximal exercise (VO2 max) is considered the best available index for assessment of exercise capacity. The purpose of this study is to determine if the use of actual versus ideal body weight in standard regression equations for predicted VO2 max results in differences in predicted VO2 max. Methods. This is a retrospective chart review of patients who were predominantly in active military duty with complaints of dyspnea or exercise tolerance and who underwent cardiopulmonary exercise testing (CPET) from 2007 to 2009. Results. A total of 230 subjects completed CPET on a bicycle ergometer with a male predominance (62%) and an average age of 37?±?15 years. There was significant discordance between the measured VO2 max and predicted VO2 max when measured by the Hansen and Wasserman reference equations ( ). Specifically, there was less overestimation when predicted VO2 max was based on ideal body weight as opposed to actual body weight. Conclusion. Our retrospective analysis confirmed the wide variations in predicted versus measured VO2 max based on varying prediction equations and showed the potential advantage of using ideal body weight as opposed to actual body weight in order to further standardize reference norms. 1. Introduction The determination of functional capacity to perform maximal exercise is one of the intended goals of any form of stress testing. Cardiopulmonary exercise testing (CPET) offers two specific advantages over conventional stress testing. During conventional testing, the degree of effort can be measured in several ways including subject report of volitional fatigue, ratings of perceived exertion, the percentage of predicted heart rate achieved, and the interpretation of the provider who is supervising the test. Another advantage of CPET is the direct measurement of maximal oxygen consumption as a measure of functional capacity, referred to as VO2 max. The objective of this study was to compare published reference values for VO2 max based on ideal versus actual body weight to determine the effect on interpretation of maximal exercise during CPET. 2. Methods 2.1. Study Protocol and Oversight The study is a retrospective review of a series of CPET data initially utilizing predicted VO2 max using the Jones 1983 reference equation: Male: , and Female: . Maximum VO2 was recalculated using different prediction equations and ideal versus actual body weight, respectively. Physicians trained in the interpretation of CPET determined if interpretation of maximal exercise differed using the various prediction

References

[1]  G. J. Balady, R. Arena, K. Sietsema et al., “Clinician's guide to cardiopulmonary exercise testing in adults: a scientific statement from the American heart association,” Circulation, vol. 122, no. 2, pp. 191–225, 2010.
[2]  N. L. Jones, L. Makrides, C. Hitchcock, T. Chypchar, and N. McCartney, “Normal standards for an incremental progressive cycle ergometer test,” American Review of Respiratory Disease, vol. 131, no. 5, pp. 700–708, 1985.
[3]  J. E. Hansen, D. Y. Sue, and K. Wasserman, “Predicted values for clinical exercise testing,” American Review of Respiratory Disease, vol. 129, no. 2, pp. S49–S55, 1984.
[4]  K. Wasserman, J. E. Hansen, D. Y. Sue, R. Casaburi, and B. J. Whipp, Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications, Lippincott, Williams & Wilkins, Philadelphia, Pa, USA, 3rd edition, 1999.
[5]  I. M. Weisman and R. J. Zeballos :, “A step approach to the evaluation of unexplained dyspnea: the role of cardiopulmonary exercise testing,” Pulmonary Perspective, vol. 15, pp. 8–11, 1998.
[6]  “American Thoracic Society/American College of Chest Physicians statement on cardiopulmonary stress testing,” American Journal of Respiratory and Critical Care Medicine, vol. 167, pp. 211–277, 2003.
[7]  J. M. Sill, M. J. Morris, J. E. Johnson, P. F. Allan, and V. X. Grbach, “Cardiopulmonary exercise test interpretation using age-matched controls to evaluate exertional dyspnea,” Military Medicine, vol. 174, no. 11, pp. 1177–1182, 2009.
[8]  J. A. Vogel, J. F. Patton, R. P. Mello, and W. L. Daniels, “An analysis of aerobic capacity in a large United States population,” Journal of Applied Physiology, vol. 60, no. 2, pp. 494–500, 1985.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413