全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Receptor Inhibitors in Acute Coronary Syndromes: What Is New on the Horizon?

DOI: 10.1155/2013/195456

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dual antiplatelet therapy with aspirin and a P2Y12 receptor inhibitor represents the cornerstone therapy for patients with acute coronary syndromes or undergoing percutaneous interventions, leading to a reduction of subsequent ischemic events. Variable response to clopidogrel has received close attention, and pharmacokinetic, pharmacodynamic, and pharmacogenomic factors have been identified as culprits. This led to the introduction of newer, potentially safer, and more effective antiplatelet agents (prasugrel and ticagrelor). Additionally, several point-of-care assays of platelet function have been developed in recent years to rapidly screen individuals on antiplatelet therapy. While the routine use of platelet function testing is uncertain and not currently recommended, it may be useful in instances when the degree of platelet inhibition may be uncertain such as high-risk patients undergoing percutaneous coronary intervention or when there may be a suspected pharmacodynamic interaction with other drugs. The current paper focuses on the P2Y12 receptor inhibitors and their pharmacogenetics and indications in patients with acute coronary syndromes or receiving percutaneous coronary interventions as well as the applicability of platelet function testing in this clinical context. 1. Introduction The clinical presentation of patients with coronary atherosclerosis is either as stable angina or as an acute coronary syndrome (ACS). The ACSs represent the more acute clinical manifestations of coronary artery disease (CAD) and include unstable angina (UA), non-ST elevation myocardial infarction (NSTEMI), and ST elevation myocardial infarction (STEMI). Despite maximal therapy, 5%–10% of patients with ACS will suffer a recurrent cardiac event or death within the first month after the initial presentation. While patients with stable angina have only narrowing of their coronary arteries, those with ACS have atheromatous plaque rupture and acute thrombus formation. Therefore, it is well recognized that platelet activation and aggregation play a central role in the physiopathology of ACS. In addition to aspirin and anticoagulants, antiplatelet agents represent an important therapeutic step for this patient population, with newer and more potent agents becoming available on the market [1, 2]. During an acute coronary event, vascular wall injury exposes collagen that leads to adhesion of inactive platelets, which subsequently become activated. Platelet activation results in degranulation and secretion of adenosine diphosphate (ADP), thromboxane A2 (TXA2), and

References

[1]  M. Cohen, “Improving long-term ACS management: is there a role for the new antiplatelets?” Journal of Interventional Cardiology, vol. 25, no. 5, pp. 425–432, 2012.
[2]  R. Bhatheja and D. Mukherjee, “Acute Coronary syndromes: unstable angina/non-ST elevation myocardial infarction,” Critical Care Clinics, vol. 23, no. 4, pp. 709–735, 2007.
[3]  G. W. Stone and H. D. Aronow, “Long-term care after percutaneous coronary intervention: focus on the role of antiplatelet therapy,” Mayo Clinic Proceedings, vol. 81, no. 5, pp. 641–652, 2006.
[4]  P. Gladding, M. Webster, J. Ormiston, S. Olsen, and H. White, “Antiplatelet drug nonresponsiveness,” American Heart Journal, vol. 155, no. 4, pp. 591–599, 2008.
[5]  D. Taubert, A. Kastrati, S. Harlfinger et al., “Pharmacokinetics of clopidogrel after administration of a high loading dose,” Thrombosis and Haemostasis, vol. 92, no. 2, pp. 311–316, 2004.
[6]  Plavix, http://products.sanofi.ca/en/plavix.pdf.
[7]  R. Hall and C. D. Mazer, “Antiplatelet drugs: a review of their pharmacology and management in the perioperative period,” Anesthesia and Analgesia, vol. 112, no. 2, pp. 292–318, 2011.
[8]  W. Hochholzer, D. Trenk, D. Frundi et al., “Time dependence of platelet inhibition after a 600-mg loading dose of clopidogrel in a large, unselected cohort of candidates for percutaneous coronary intervention,” Circulation, vol. 111, no. 20, pp. 2560–2564, 2005.
[9]  P. H. Slugg, D. R. Much, W. B. Smith, R. Vargas, P. Nichola, and J. Necciari, “Cirrhosis does not afffect the pharmacokinetics and pharmacodynamics of clopidogrel,” Journal of Clinical Pharmacology, vol. 40, no. 4, pp. 396–401, 2000.
[10]  G. Deray, C. Bagnis, R. Brouard et al., “Clopidogrel activities in patients with renal function impairment,” Clinical Drug Investigation, vol. 16, no. 4, pp. 319–328, 1998.
[11]  D. L. Bhatt, “Prasugrel in clinical practice,” The New England Journal of Medicine, vol. 361, no. 10, pp. 940–942, 2009.
[12]  S. D. Wiviott, E. M. Antman, and E. Braunwald, “Prasugrel,” Circulation, vol. 122, no. 4, pp. 394–403, 2010.
[13]  P. P. Dobesh, “Pharmacokinetics and pharmacodynamics of prasugrel, a thienopyridine P2Y12 inhibitor,” Pharmacotherapy, vol. 29, no. 9, pp. 1089–1102, 2009.
[14]  M. T. Martin, S. A. Spinler, and E. A. Nutescu, “Emerging antiplatelet therapies in percutaneous coronary intervention: a focus on prasugrel,” Clinical Therapeutics, vol. 33, no. 4, pp. 425–442, 2011.
[15]  D. S. Small, R. E. Wrishko, C. S. Ernest et al., “Prasugrel pharmacokinetics and pharmacodynamics in subjects with moderate renal impairment and end-stage renal disease,” Journal of Clinical Pharmacy and Therapeutics, vol. 34, no. 5, pp. 585–594, 2009.
[16]  S. D. Wiviott, E. Braunwald, C. H. McCabe et al., “Prasugrel versus clopidogrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 357, no. 20, pp. 2001–2015, 2007.
[17]  R. E. Wrishko, C. S. Ernest, D. S. Small et al., “Population pharmacokinetic analyses to evaluate the influence of intrinsic and extrinsic factors on exposure of prasugrel active metabolite in TRITON-TIMI 38,” Journal of Clinical Pharmacology, vol. 49, no. 8, pp. 984–998, 2009.
[18]  C. Trumel, B. Payrastre, M. Plantavid et al., “A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase,” Blood, vol. 94, no. 12, pp. 4156–4165, 1999.
[19]  A. K. Wihlborg, L. Wang, O. O. Braun et al., “ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 10, pp. 1810–1815, 2004.
[20]  J. J. Nawarskas and S. M. Clark, “Ticagrelor: a novel reversible oral antiplatelet agent,” Cardiology in Review, vol. 19, no. 2, pp. 95–100, 2011.
[21]  M. Kowalczyk, M. Banach, D. P. Mikhailidis, S. Hannam, and J. Rysz, “Ticagrelor—a new platelet aggregation inhibitor in patients with acute coronary syndromes. An improvement of other inhibitors?” Medical Science Monitor, vol. 15, no. 12, pp. MS24–MS30, 2009.
[22]  S. D. Anderson, N. K. Shah, J. Yim, and B. J. Epstein, “Efficacy and safety of ticagrelor: a reversible P2Y12 receptor antagonist,” Annals of Pharmacotherapy, vol. 44, no. 3, pp. 524–537, 2010.
[23]  K. Butler and R. Teng, “Pharmacokinetics, pharmacodynamics, and safety of ticagrelor in volunteers with mild hepatic impairment,” Journal of Clinical Pharmacology, vol. 51, no. 7, pp. 978–987, 2011.
[24]  R. F. Storey, K. P. Bliden, R. Ecob et al., “Earlier recovery of platelet function after discontinuation of treatment with ticagrelor compared with clopidogrel in patients with high antiplatelet responses,” Journal of Thrombosis and Haemostasis, vol. 9, no. 9, pp. 1730–1737, 2011.
[25]  P. A. Gurbel, K. P. Bliden, K. Butler et al., “Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study,” Circulation, vol. 120, no. 25, pp. 2577–2585, 2009.
[26]  R. F. Storey, S. Husted, R. A. Harrington et al., “Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes,” Journal of the American College of Cardiology, vol. 50, no. 19, pp. 1852–1856, 2007.
[27]  D. Alexopoulos, A. Galati, I. Xanthopoulou et al., et al., “Ticagrelor versus prasugrel in acute coronary syndrome patients with high on-clopidogrel platelet reactivity following percutaneous coronary intervention: a pharmacodynamic study,” Journal of the American College of Cardiology, vol. 60, no. 3, pp. 193–199, 2012.
[28]  N. B. Norgard, “Cangrelor: a novel P2Y12 receptor antagonist,” Expert Opinion on Investigational Drugs, vol. 18, no. 8, pp. 1219–1230, 2009.
[29]  J. S. Berger, M. T. Roe, C. M. Gibson et al., “Safety and feasibility of adjunctive antiplatelet therapy with intravenous elinogrel, a direct-acting and reversible P2Y12 ADP-receptor antagonist, before primary percutaneous intervention in patients with ST-elevation myocardial infarction: the Early Rapid ReversAl of Platelet ThromboSis with Intravenous Elinogrel before PCI to Optimize REperfusion in Acute Myocardial Infarction (ERASE MI),” American Heart Journal, vol. 158, no. 6, pp. 998.e1–1004.e1, 2009.
[30]  M. S. Sabatine, “Novel antiplatelet strategies in acute coronary syndromes,” Cleveland Clinic Journal of Medicine, vol. 76, supplement 1, pp. S8–S15, 2009.
[31]  A. D. Michelson, M. Cattaneo, J. W. Eikelboom et al., “Aspirin resistance: position paper of the working group on aspirin resistance,” Journal of Thrombosis and Haemostasis, vol. 3, no. 6, pp. 1309–1311, 2005.
[32]  L. Bonello, U. S. Tantry, R. Marcucci et al., “Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate,” Journal of the American College of Cardiology, vol. 56, no. 12, pp. 919–933, 2010.
[33]  F. Santilli, N. Vazzana, R. Liani, M. T. Guagnano, and G. Davì, “Platelet activation in obesity and metabolic syndrome,” Obesity Reviews, vol. 13, no. 1, pp. 27–42, 2012.
[34]  P. A. Gurbel, M. J. Antonino, and U. S. Tantry, “Recent developments in clopidogrel pharmacology and their relation to clinical outcomes,” Expert Opinion on Drug Metabolism and Toxicology, vol. 5, no. 8, pp. 989–1004, 2009.
[35]  Z. Qureshi and A. R. Hobson, “Clopidogrel “resistance”: where are we now?” Cardiovascular Therapeutics, vol. 31, no. 1, pp. 3–11, 2013.
[36]  D. Williams and J. Feely, “Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors,” Clinical Pharmacokinetics, vol. 41, no. 5, pp. 343–370, 2002.
[37]  W. C. Lau, L. A. Waskell, P. B. Watkins et al., “Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction,” Circulation, vol. 107, no. 1, pp. 32–37, 2003.
[38]  W. C. Lau and P. A. Gurbel, “The drug-drug interaction between proton pump inhibitors and clopidogrel,” Canadian Medical Association Journal, vol. 180, no. 7, pp. 699–700, 2009.
[39]  N. S. Abraham, “Prescribing proton pump inhibitor and clopidogrel together: current state of recommendations,” Current Opinion in Gastroenterology, vol. 27, no. 6, pp. 558–564, 2011.
[40]  T. Burkard, C. A. Kaiser, H. Brunner-La Rocca et al., “Combined clopidogrel and proton pump inhibitor therapy is associated with higher cardiovascular event rates after percutaneous coronary intervention: a report from the BASKET trial,” Journal of Internal Medicine, vol. 271, no. 3, pp. 257–263, 2012.
[41]  T. Cuisset, P. E. Morange, and M. C. Alessi, “Recent advances in the pharmacogenetics of clopidogrel,” Human Genetics, vol. 131, no. 5, pp. 653–664, 2012.
[42]  M. Kara?niewicz-?ada, D. Danielak, and F. G?ówka, “Genetic and non-genetic factors affecting the response to clopidogrel therapy,” Expert Opinion on Pharmacotherapy, vol. 13, no. 5, pp. 663–683, 2012.
[43]  J. S. Hulot, J. P. Collet, J. Silvain et al., “Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration. A systematic meta-analysis,” Journal of the American College of Cardiology, vol. 56, no. 2, pp. 134–143, 2010.
[44]  J. L. Mega, T. Simon, J. P. Collet et al., “Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis,” The Journal of the American Medical Association, vol. 304, no. 16, pp. 1821–1830, 2010.
[45]  D. R. Holmes, G. J. Dehmer, S. Kaul, D. Leifer, P. T. O'Gara, and C. M. Stein, “ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American college of cardiology foundation task force on clinical expert consensus documents and the American heart association,” Journal of the American College of Cardiology, vol. 56, no. 4, pp. 321–341, 2010.
[46]  D. Sibbing, W. Koch, D. Gebhard et al., “Cytochrome 2c19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement,” Circulation, vol. 121, no. 4, pp. 512–518, 2010.
[47]  K. A. Tiroch, D. Sibbing, W. Koch et al., “Protective effect of the CYP2C19*17 polymorphism with increased activation of clopidogrel on cardiovascular events,” American Heart Journal, vol. 160, no. 3, pp. 506–512, 2010.
[48]  C. Frére, T. Cuisset, B. Gaborit, M. C. Alessi, and J. S. Hulot, “The CYP2C19*17 allele is associated with better platelet response to clopidogrel in patients admitted for non-ST acute coronary syndrome,” Journal of Thrombosis and Haemostasis, vol. 7, no. 8, pp. 1409–1411, 2009.
[49]  M. V. Holmes, P. Perel, T. Shah, A. D. Hingorani, and J. P. Casas, “CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis,” The Journal of the American Medical Association, vol. 306, no. 24, pp. 2704–2714, 2011.
[50]  J. L. Mega, S. L. Close, S. D. Wiviott et al., “Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis,” The Lancet, vol. 376, no. 9749, pp. 1312–1319, 2010.
[51]  L. Wallentin, S. James, R. F. Storey et al., “Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial,” The Lancet, vol. 376, no. 9749, pp. 1320–1328, 2010.
[52]  H. J. Bouman, E. Sch?mig, J. W. van Werkum et al., “Paraoxonase-1 is a major determinant of clopidogrel efficacy,” Nature Medicine, vol. 17, no. 1, pp. 110–116, 2011.
[53]  D. Sibbing, W. Koch, S. Massberg et al., “No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting,” European Heart Journal, vol. 32, no. 13, pp. 1605–1613, 2011.
[54]  J. S. Hulot, J. P. Collet, G. Cayla et al., “CYP2C19 but not PON1 genetic variants influence clopidogrel pharmacokinetics, pharmacodynamics, and clinical efficacy in post-myocardial infarction patients,” Circulation: Cardiovascular Interventions, vol. 4, no. 5, pp. 422–428, 2011.
[55]  L. Bonello, M. Pansieri, J. Mancini et al., “High on-treatment platelet reactivity after prasugrel loading dose and cardiovascular events after percutaneous coronary intervention in acute coronary syndromes,” Journal of the American College of Cardiology, vol. 58, no. 5, pp. 467–473, 2011.
[56]  N. A. Farid, R. L. Smith, T. A. Gillespie et al., “The disposition of prasugrel, a novel thienopyridine, in humans,” Drug Metabolism and Disposition, vol. 35, no. 7, pp. 1096–1104, 2007.
[57]  J. L. F. Rehmel, J. A. Eckstein, N. A. Farid et al., “Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450,” Drug Metabolism and Disposition, vol. 34, no. 4, pp. 600–607, 2006.
[58]  E. T. Williams, K. O. Jones, G. D. Ponsler et al., “The biotransformation of prasugrel, a new thienopyridine prodrug, by the human carboxylesterases 1 and 2,” Drug Metabolism and Disposition, vol. 36, no. 7, pp. 1227–1232, 2008.
[59]  J. T. Brandt, S. L. Close, S. J. Iturria et al., “Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel,” Journal of Thrombosis and Haemostasis, vol. 5, no. 12, pp. 2429–2436, 2007.
[60]  D. Alexopoulos, A. Panagiotou, I. Xanthopoulou et al., “Antiplatelet effects of prasugrel versus double clopidogrel in patients on hemodialysis and with high on-treatment platelet reactivity,” Journal of Thrombosis and Haemostasis, vol. 9, no. 12, pp. 2379–2385, 2011.
[61]  D. Alexopoulos, I. Xanthopoulou, P. Davlouros et al., “Prasugrel overcomes high on-clopidogrel platelet reactivity in chronic coronary artery disease patients more effectively than high dose (150?mg) clopidogrel,” American Heart Journal, vol. 162, no. 4, pp. 733–739, 2011.
[62]  D. Alexopoulos, G. Dimitropoulos, P. Davlouros et al., “Prasugrel overcomes high on-clopidogrel platelet reactivity post-stenting more effectively than high-dose (150-mg) clopidogrel: the importance of cyp2c19 (*)2 genotyping,” JACC: Cardiovascular Interventions, vol. 4, no. 4, pp. 403–410, 2011.
[63]  J. L. Mega, S. L. Close, S. D. Wiviott et al., “Cytochrome P-450 polymorphisms and response to clopidogrel,” The New England Journal of Medicine, vol. 360, no. 4, pp. 354–362, 2009.
[64]  H. Neubauer, A. Kaiser, B. Busse, and A. Mügge, “Identification, evaluation and treatment of prasugrel low-response after coronary stent implantation—a preliminary study,” Thrombosis Research, vol. 126, no. 5, pp. e389–e391, 2010.
[65]  D. J. Angiolillo, J. J. Badimon, J. F. Saucedo et al., “A pharmacodynamic comparison of prasugrel versus high-dose clopidogrel in patients with type 2 diabetes mellitus and coronary artery disease: results of the Optimizing anti-Platelet Therapy in diabetes MellitUS (OPTIMUS)-3 Trial,” European Heart Journal, vol. 32, no. 7, pp. 838–846, 2011.
[66]  D. Alexopoulos, “Prasugrel resistance: fact or fiction,” Platelets, vol. 23, no. 2, pp. 83–90, 2012.
[67]  I. Xanthopoulou, E. F. Stavrou, G. Kassimis, P. Goudas, and D. Alexopoulos, “Resistance to high-maintenance dose of prasugrel treated by ticagrelor: a case report,” Platelets. In press.
[68]  R. Teng, “Pharmacokinetic, pharmacodynamic and pharmacogenetic profile of the oral antiplatelet agent ticagrelor,” Clinical Pharmacokinetics, vol. 51, no. 5, pp. 305–318, 2012.
[69]  A. D. Michelson, “Methods for the measurement of platelet function,” American Journal of Cardiology, vol. 103, no. 3, supplement, pp. 20A–26A, 2009.
[70]  T. Gremmel, S. Steiner, D. Seidinger, R. Koppensteiner, S. Panzer, and C. W. Kopp, “Comparison of methods to evaluate clopidogrel-mediated platelet inhibition after percutaneous intervention with stent implantation,” Thrombosis and Haemostasis, vol. 101, no. 2, pp. 333–339, 2009.
[71]  H. J. Bouman, E. Parlak, J. W. van Werkum et al., “Which platelet function test is suitable to monitor clopidogrel responsiveness? A pharmacokinetic analysis on the active metabolite of clopidogrel,” Journal of Thrombosis and Haemostasis, vol. 8, no. 3, pp. 482–488, 2010.
[72]  D. Sibbing, S. Braun, S. Jawansky et al., “Assessment of ADP-induced platelet aggregation with light transmission aggregometry and multiple electrode platelet aggregometry before and after clopidogrel treatment,” Thrombosis and Haemostasis, vol. 99, no. 1, pp. 121–126, 2008.
[73]  M. J. Price, S. Endemann, R. R. Gollapudi et al., “Prognostic significance of post-clopidogrel platelet reactivity assessed by a point-of-care assay on thrombotic events after drug-eluting stent implantation,” European Heart Journal, vol. 29, no. 8, pp. 992–1000, 2008.
[74]  R. Marcucci, A. M. Gori, R. Paniccia et al., “Cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a point-of-care assay a 12-month follow-up,” Circulation, vol. 119, no. 2, pp. 237–242, 2009.
[75]  R. K. Sharma, D. J. Voelker, R. Sharma, H. K. Reddy, H. Dod, and J. D. Marsh, “Evolving role of platelet function testing in coronary artery interventions,” Vascular Health and Risk Management, vol. 8, pp. 65–75, 2012.
[76]  P. Codner, M. Vaduganathan, E. Rechavia et al., “Clopidogrel response up to six months after acute myocardial infarction,” American Journal of Cardiology, vol. 110, no. 3, pp. 321–325, 2012.
[77]  J. Jang, J. Lim, K. Chang et al., “A comparison of INNOVANCE PFA P2Y and VerifyNow P2Y12 assay for the assessment of clopidogrel resistance in patients undergoing percutaneous coronary intervention,” Journal of Clinical Laboratory Analysis, vol. 26, no. 4, pp. 262–266, 2012.
[78]  N. M. Gibbs, “Point-of-care assessment of antiplatelet agents in the perioperative period: a review,” Anaesthesia and Intensive Care, vol. 37, no. 3, pp. 354–369, 2009.
[79]  N. J. Breet, J. W. van Werkum, H. J. Bouman et al., “Comparison of platelet function tests in predicting clinical outcome in patients undergoing coronary stent implantation,” The Journal of the American Medical Association, vol. 303, no. 8, pp. 754–762, 2010.
[80]  D. Sibbing, S. Braun, T. Morath et al., “Platelet reactivity after clopidogrel treatment assessed with point-of-care analysis and early drug-eluting stent thrombosis,” Journal of the American College of Cardiology, vol. 53, no. 10, pp. 849–856, 2009.
[81]  F. Mangiacapra, G. Patti, E. Barbato et al., et al., “A therapeutic window for platelet reactivity for patients undergoing elective percutaneous coronary intervention: results of the ARMYDA-PROVE (Antiplatelet therapy for Reduction of MYocardial Damage during Angioplasty-Platelet Reactivity for Outcome Validation Effort) study,” JACC: Cardiovascular Interventions, vol. 5, no. 3, pp. 281–289, 2012.
[82]  F. G. Kushner, M. Hand, S. C. Smith et al., “2009 focused updates: ACC/AHA guidelines for the management of patients with st-elevation myocardial infarction (Updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): a report of the American college of cardiology foundation/American heart association task force on practice guidelines,” Circulation, vol. 120, no. 22, pp. 2271–2306, 2009.
[83]  H. Jneid, J. L. Anderson, R. S. Wright et al., et al., “2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/non-st-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American college of cardiology foundation/American heart association task force on practice guidelines,” Circulation, vol. 126, no. 7, pp. 875–910, 2012.
[84]  S. R. Mehta, J. F. Tanguay, J. W. Eikelboom et al., “Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial,” The Lancet, vol. 376, no. 9748, pp. 1233–1243, 2010.
[85]  M. T. Roe, P. W. Armstrong, K. A. Fox et al., et al., “Prasugrel versus clopidogrel for acute coronary syndromes without revascularization,” The New England Journal of Medicine, vol. 367, no. 14, pp. 1297–1309, 2012.
[86]  G. Montalescot, S. D. Wiviott, E. Braunwald et al., “Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial,” The Lancet, vol. 373, no. 9665, pp. 723–731, 2009.
[87]  L. Wallentin, R. C. Becker, A. Budaj et al., “Ticagrelor versus clopidogrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 361, no. 11, pp. 1045–1057, 2009.
[88]  R. A. Harrington, G. W. Stone, S. McNulty et al., “Platelet inhibition with cangrelor in patients undergoing PCI,” The New England Journal of Medicine, vol. 361, no. 24, pp. 2318–2329, 2009.
[89]  D. L. Bhatt, A. M. Lincoff, C. M. Gibson et al., “Intravenous platelet blockade with cangrelor during PCI,” The New England Journal of Medicine, vol. 361, no. 24, pp. 2330–2341, 2009.
[90]  G. N. Levine, E. R. Bates, J. C. Blankenship, et al., “2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions,” Circulation, vol. 124, pp. e574–e651, 2011.
[91]  C. W. Hamm, J. P. Bassand, S. Agewall et al., et al., “ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC),” European Heart Journal, vol. 32, no. 23, pp. 2999–3054, 2011.
[92]  P. G. Steg, S. K. James, D. Atar, et al., “ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation,” European Heart Journal, vol. 33, no. 20, pp. 2569–2619, 2012.
[93]  Z. M. Chen, L. X. Jiang, Y. P. Chen et al., “Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial,” The Lancet, vol. 366, no. 9497, pp. 1607–1621, 2005.
[94]  M. S. Sabatine, C. P. Cannon, C. M. Gibson et al., “Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation,” The New England Journal of Medicine, vol. 352, no. 12, pp. 1179–1189, 2005.
[95]  C. M. Barker, S. S. Murray, P. S. Teirstein, D. E. Kandzari, E. J. Topol, and M. J. Price, “Pilot study of the antiplatelet effect of increased clopidogrel maintenance dosing and its relationship to CYP2C19 genotype in patients with high on-treatment reactivity,” JACC: Cardiovascular Interventions, vol. 3, no. 10, pp. 1001–1007, 2010.
[96]  L. Bonello, F. Paganelli, M. Arpin-Bornet et al., “Vasodilator-stimulated phosphoprotein phosphorylation analysis prior to percutaneous coronary intervention for exclusion of postprocedural major adverse cardiovascular events,” Journal of Thrombosis and Haemostasis, vol. 5, no. 8, pp. 1630–1636, 2007.
[97]  T. Bauer, H. J. Bouman, J. W. van Werkum, N. F. Ford, J. M. ten Berg, and D. Taubert, “Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis,” The British Medical Journal, vol. 343, Article ID d4588, 2011.
[98]  J. P. Collet, J. S. Hulot, A. Pena et al., “Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study,” The Lancet, vol. 373, no. 9660, pp. 309–317, 2009.
[99]  J. P. Collet, J. S. Hulot, G. Anzaha et al., “High doses of clopidogrel to overcome genetic resistance: the randomized crossover clovis-2 (clopidogrel and response variability investigation study 2),” JACC: Cardiovascular Interventions, vol. 4, no. 4, pp. 392–402, 2011.
[100]  P. Fontana, J. S. Hulot, P. de Moerloose, and P. Gaussem, “Influence of CYP2C19 and CYP3A4 gene polymorphisms on clopidogrel responsiveness in healthy subjects,” Journal of Thrombosis and Haemostasis, vol. 5, no. 10, pp. 2153–2155, 2007.
[101]  T. Geisler, E. Schaeffeler, J. Dippon et al., “CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation,” Pharmacogenomics, vol. 9, no. 9, pp. 1251–1259, 2008.
[102]  B. Giusti, A. M. Gori, R. Marcucci et al., “Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis,” American Journal of Cardiology, vol. 103, no. 6, pp. 806–811, 2009.
[103]  B. Giusti, A. M. Gori, R. Marcucci et al., “Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10+12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients,” Pharmacogenetics and Genomics, vol. 17, no. 12, pp. 1057–1064, 2007.
[104]  P. Gladding, M. Webster, I. Zeng et al., “The pharmacogenetics and pharmacodynamics of clopidogrel response. An analysis from the princ (plavix response in coronary intervention) trial,” JACC: Cardiovascular Interventions, vol. 1, no. 6, pp. 620–627, 2008.
[105]  A. Harmsze, J. W. van Werkum, H. J. Bouman et al., “Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation,” Pharmacogenetics and Genomics, vol. 20, no. 1, pp. 18–25, 2010.
[106]  W. Hochholzer, D. Trenk, M. F. Fromm et al., “Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement,” Journal of the American College of Cardiology, vol. 55, no. 22, pp. 2427–2434, 2010.
[107]  J. S. Hulot, A. Bura, E. Villard et al., “Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects,” Blood, vol. 108, no. 7, pp. 2244–2247, 2006.
[108]  T. Jinnai, H. Horiuchi, T. Makiyama et al., “Impact of CYP2C19 polymorphisms on the antiplatelet effect of clopidogrel in an actual clinical setting in Japan,” Circulation Journal, vol. 73, no. 8, pp. 1498–1503, 2009.
[109]  I. S. Kim, Y. H. Jeong, Y. Park et al., “Platelet inhibition by adjunctive cilostazol versus high maintenance-dose clopidogrel in patients with acute myocardial infarction according to cytochrome P450 2C19 genotype,” JACC: Cardiovascular Interventions, vol. 4, no. 4, pp. 381–391, 2011.
[110]  J. M. Lee, S. Park, D. J. Shin et al., “Relation of genetic polymorphisms in the cytochrome P450 gene with clopidogrel resistance after drug-eluting stent implantation in Koreans,” American Journal of Cardiology, vol. 104, no. 1, pp. 46–51, 2009.
[111]  A. Maeda, H. Ando, T. Asai et al., “Differential impacts of CYP2C19 gene polymorphisms on the antiplatelet effects of clopidogrel and ticlopidine,” Clinical Pharmacology and Therapeutics, vol. 89, no. 2, pp. 229–233, 2011.
[112]  I. Y. Oh, K. W. Park, S. H. Kang et al., et al., “Association of cytochrome P450 2C19*2 polymorphism with clopidogrel response variability and cardiovascular events in Koreans treated with drug-eluting stents,” Heart, vol. 98, no. 2, pp. 139–144, 2012.
[113]  K. J. Park, H. S. Chung, S. R. Kim, H. J. Kim, J. Y. Han, and S. Y. Lee, “Clinical, pharmacokinetic, and pharmacogenetic determinants of clopidogrel resistance in Korean patients with acute coronary syndrome,” Korean Journal of Laboratory Medicine, vol. 31, no. 2, pp. 91–94, 2011.
[114]  K. W. Park, J. J. Park, S. P. Lee et al., “Cilostazol attenuates on-treatment platelet reactivity in patients with CYP2C19 loss of function alleles receiving dual antiplatelet therapy: a genetic substudy of the CILON-T randomised controlled trial,” Heart, vol. 97, no. 8, pp. 641–647, 2011.
[115]  A. A. R. Pettersen, H. Arnesen, T. B. Opstad, and I. Seljeflot, “The influence of CYP 2C19*2 polymorphism on platelet function testing during single antiplatelet treatment with clopidogrel,” Thrombosis Journal, vol. 9, article 4, 2011.
[116]  T. Simon, C. Verstuyft, M. Mary-Krause et al., et al., “Genetic determinants of response to clopidogrel and cardiovascular events,” The New England Journal of Medicine, vol. 360, no. 4, pp. 363–375, 2009.
[117]  A. R. Shuldiner, J. R. O'Connell, K. P. Bliden et al., “Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy,” The Journal of the American Medical Association, vol. 302, no. 8, pp. 849–858, 2009.
[118]  K. Umemura, T. Furuta, and K. Kondo, “The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects,” Journal of Thrombosis and Haemostasis, vol. 6, no. 8, pp. 1439–1441, 2008.
[119]  D. J. Angiolillo, A. Fernandez-Ortiz, E. Bernardo et al., “Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1895–1900, 2006.
[120]  J. W. Suh, B. K. Koo, S. Y. Zhang et al., “Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel,” Canadian Medical Association Journal, vol. 174, no. 12, pp. 1715–1722, 2006.
[121]  S. M. G. Smith, H. M. Judge, G. Peters et al., “Common sequence variations in the P2Y12 and CYP3A5 genes do not explain the variability in the inhibitory effects of clopidogrel therapy,” Platelets, vol. 17, no. 4, pp. 250–258, 2006.
[122]  J. H. Oestreich, S. S. Smyth, and C. L. Campbell, “Platelet function analysis: at the edge of meaning,” Thrombosis and Haemostasis, vol. 101, no. 2, pp. 217–219, 2009.
[123]  S. Matetzky, B. Shenkman, V. Guetta et al., “Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction,” Circulation, vol. 109, no. 25, pp. 3171–3175, 2004.
[124]  P. A. Gurbel, K. P. Bliden, K. Guyer et al., “Platelet reactivity in patients and recurrent events post-stenting: results of the PREPARE POST-STENTING study,” Journal of the American College of Cardiology, vol. 46, no. 10, pp. 1820–1826, 2005.
[125]  K. P. Bliden, J. DiChiara, U. S. Tantry, A. K. Bassi, S. K. Chaganti, and P. A. Gurbel, “Increased risk in patients with high platelet aggregation receiving chronic clopidogrel therapy undergoing percutaneous coronary intervention. Is the current antiplatelet therapy adequate?” Journal of the American College of Cardiology, vol. 49, no. 6, pp. 657–666, 2007.
[126]  A. Migliorini, R. Valenti, R. Marcucci et al., “High residual platelet reactivity after clopidogrel loading and long-term clinical outcome after drug-eluting stenting for unprotected left main coronary disease,” Circulation, vol. 120, no. 22, pp. 2214–2221, 2009.
[127]  S. El Ghannudi, P. Ohlmann, N. Meyer et al., “Impact of P2Y12 inhibition by clopidogrel on cardiovascular mortality in unselected patients treated by percutaneous coronary angioplasty: a prospective registry,” JACC: Cardiovascular Interventions, vol. 3, no. 6, pp. 648–656, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133