全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lomustine Analogous Drug Structures for Intervention of Brain and Spinal Cord Tumors: The Benefit of In Silico Substructure Search and Analysis

DOI: 10.1155/2013/360624

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lomustine is a nitrosourea anticancer agent shown to be effective for treatment of childhood medulloblastoma. In silico substructure searches produced 17 novel nitrosourea agents analogous to lumustine and retaining activity for DNA alkylation and cytotoxic activity. The mean values for Log P, polar surface area, formula weight, number of oxygens & nitrogens, and rotatable bonds were 2.524, 62.89 Anstroms2, 232.8, 5, and 2, respectively. All 17 agents have formula weight less than 450 and Log P less than 5, two criteria preferred for blood-brain barrier penetration. These agents have a polar surface area less than 90 Angstroms2. Each show zero violations of the Rule of five indicating favorable drug likeness and oral drug activity. Hierarchical cluster analysis indicated that 16 of the novel agents were highly similar to lomustine, save for agent 12 which bears a hydroxylated branched carbon substituent. A total of 17 novel anticancer agents were elucidated having molecular properties very effective for penetrating through the BBB and into the central nervous system. This study shows the effectiveness of in silico search and recognition of anticancer agents that are suitable for the clinical treatment of brain tumors. 1. Introduction Tumors of the brain and spinal cord are considered the third most common type of childhood cancers with only leukemia and lymphoma having greater occurrence. Tumors that occur in the central nervous system (CNS) can be either primary (tumors that originate in the CNS) or metastatic (tumors formed from cancer cells having origins in other parts of the body). The various types of childhood spinal cord and brain tumors include the following: astrocytomas, atypical teratoid tumor, brain stem glioma, CNS embryonal tumor, CNS germ cell tumor, craniopharyngioma, ependymoma, medulloblastoma, spinal cord tumors, and supratentorial primitive neuroectodermal tumors [1]. The metastases-type tumors are the most common type of cancer of the CNS and appear to be increasing in incidence [2]. The pathophysiology of the brain in which metastases occur is very important for it is the location of the tumor that can lead clinicians to apply more effective therapies to target tumor growth [2]. Clinical studies conducted in Korea have shown that females are more inclined to CNS tumors (at a ratio of 1.43?:?1) and with the most common tumor type to be meningioma (31.2%), followed by glioblastoma (30.7%), and finally malignant primary tumors (19.3%) [3]. For childhood aged cases (these being less than 19 years of age) the most common types are germ

References

[1]  S. A. Alomar, “Clinical manifestation of central nervous system tumor,” Seminars in Diagnostic Pathology, vol. 27, no. 2, pp. 97–104, 2010.
[2]  I. T. Gavrilovic and J. B. Posner, “Brain metastases: epidemiology and pathophysiology,” Journal of Neuro-Oncology, vol. 75, no. 1, pp. 5–14, 2005.
[3]  C. H. Lee, K. W. Jung, H. Yoo, S. Park, and S. H. Lee, “Epidemiology of primary brain and central nervous system tumors in Korea,” Journal of Korean Neurosurgical Society, vol. 48, no. 2, pp. 145–152, 2010.
[4]  J. R. Geyer, R. Sposto, M. Jennings et al., “Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children's Cancer Group,” Journal of Clinical Oncology, vol. 23, no. 30, pp. 7621–7631, 2005.
[5]  R. J. Packer, A. Gajjar, G. Vezina et al., “Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma,” Journal of Clinical Oncology, vol. 24, no. 25, pp. 4202–4208, 2006.
[6]  S. Rutkowski, U. Bode, F. Deinlein et al., “Treatment of early childhood medulloblastoma by postoperative chemotherapy alone,” The New England Journal of Medicine, vol. 352, no. 10, pp. 978–986, 2005.
[7]  H. Pajouhesh and G. R. Lenz, “Medicinal chemical properties of successful central nervous system drugs,” NeuroRx, vol. 2, no. 4, pp. 541–553, 2005.
[8]  K. von Hoff, B. Hinkes, N. U. Gerber et al., “Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT'91,” European Journal of Cancer, vol. 45, no. 7, pp. 1209–1217, 2009.
[9]  M. D. Ris, R. Packer, J. Goldwein, D. Jones-Wallace, and J. M. Boyett, “Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a children's cancer group study,” Journal of Clinical Oncology, vol. 19, no. 15, pp. 3470–3476, 2001.
[10]  A. W. Walter, R. K. Mulhern, A. Gajjar et al., “Survival and neurodevelopmental outcome of young children with medulloblastoma at St Jude Children's Research Hospital,” Journal of Clinical Oncology, vol. 17, no. 12, pp. 3720–3728, 1999.
[11]  R. Soffietti, R. Ruda, and R. Mutani, “Management of brain metastases,” Journal of Neurology, vol. 249, no. 10, pp. 1357–1369, 2002.
[12]  G. Rutkauskiene and L. Labanauskas, “Treatment of patients of high-risk group of medulloblastoma with the adjuvant lomustine, cisplatin, and vincristine chemotherapy,” Medicina, vol. 41, no. 12, pp. 1026–1034, 2005.
[13]  R. L. Smith, X. Shi, and E. J. Estin, “Chemotherapy dose-intensity and survival for childhood medulloblastoma,” Anticancer Research, vol. 32, no. 9, pp. 3885–3892, 2012.
[14]  G. M. Lewandowicz, B. Harding, W. Harkness, R. Hayward, D. G. T. Thomas, and J. L. Darling, “Chemosensitivity in childhood brain tumours in vitro: evidence of differential sensitivity to lomustine (CCNU) and vincristine,” European Journal of Cancer, vol. 36, no. 15, pp. 1955–1964, 2000.
[15]  S. Ekins, J. Mestres, and B. Testa, “In silico pharmacology for drug discovery: applications to targets and beyond,” British Journal of Pharmacology, vol. 152, no. 1, pp. 21–37, 2007.
[16]  H. van de Waterbeemd, G. Camenisch, G. Folkers, J. R. Chretien, and O. A. Raevsky, “Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors,” Journal of Drug Targeting, vol. 6, no. 2, pp. 151–165, 1998.
[17]  C. A. Lipinski, “Drew University Medical Chemistry Special Topics Course,” July 1999.
[18]  S. T. Bow, Pattern Recognition, Marcel Dekker, New York, NY, USA, 1984.
[19]  C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 46, no. 1–3, pp. 3–26, 2001.
[20]  D. E. Clark, “Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration,” Journal of Pharmaceutical Sciences, vol. 88, no. 8, pp. 815–821, 1999.
[21]  B. S. Everitt and G. Dunn, Applied Multivariate Data Analysis, Edward Arnold, London, UK, 1991.
[22]  E. O. Vik-Mo, C. Sandberg, H. Olstorn et al., “Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions,” Neuro-Oncology, vol. 12, no. 12, pp. 1220–1230, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413